mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 05:31:15 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			454 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			454 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: SpanCategorizer
 | |
| tag: class,experimental
 | |
| source: spacy/pipeline/spancat.py
 | |
| new: 3.1
 | |
| teaser: 'Pipeline component for labeling potentially overlapping spans of text'
 | |
| api_base_class: /api/pipe
 | |
| api_string_name: spancat
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| A span categorizer consists of two parts: a [suggester function](#suggesters)
 | |
| that proposes candidate spans, which may or may not overlap, and a labeler model
 | |
| that predicts zero or more labels for each candidate.
 | |
| 
 | |
| ## Config and implementation {#config}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.spancat import DEFAULT_SPANCAT_MODEL
 | |
| > config = {
 | |
| >     "threshold": 0.5,
 | |
| >     "spans_key": "labeled_spans",
 | |
| >     "max_positive": None,
 | |
| >     "model": DEFAULT_SPANCAT_MODEL,
 | |
| >     "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
 | |
| > }
 | |
| > nlp.add_pipe("spancat", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting        | Description                                                                                                                                                                                                                                                                                             |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `suggester`    | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[List[Doc], Ragged]~~                                                                       |
 | |
| | `model`        | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
 | |
| | `spans_key`    | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"spans"`. ~~str~~                                                                               |
 | |
| | `threshold`    | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~                                                                                                                                                          |
 | |
| | `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~                                                                                                                                                                                      |
 | |
| 
 | |
| ```python
 | |
| %%GITHUB_SPACY/spacy/pipeline/spancat.py
 | |
| ```
 | |
| 
 | |
| ## SpanCategorizer.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| >
 | |
| > # Construction via add_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_spancat"}}
 | |
| > parser = nlp.add_pipe("spancat", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import SpanCategorizer
 | |
| > spancat = SpanCategorizer(nlp.vocab, model, suggester)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#create_pipe).
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                                                                          |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `vocab`        | The shared vocabulary. ~~Vocab~~                                                                                                                                                                                                     |
 | |
| | `model`        | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
 | |
| | `suggester`    | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. ~~Callable[List[Doc], Ragged]~~                                                       |
 | |
| | `name`         | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                                                                                                                                  |
 | |
| | _keyword-only_ |                                                                                                                                                                                                                                      |
 | |
| | `spans_key`    | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"spans"`. ~~str~~             |
 | |
| | `threshold`    | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~                                                                                       |
 | |
| | `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~                                                                                                                   |
 | |
| 
 | |
| ## SpanCategorizer.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/spancategorizer#call) and [`pipe`](/api/spancategorizer#pipe)
 | |
| delegate to the [`predict`](/api/spancategorizer#predict) and
 | |
| [`set_annotations`](/api/spancategorizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > # This usually happens under the hood
 | |
| > processed = spancat(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## SpanCategorizer.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/spancategorizer#call) and
 | |
| [`pipe`](/api/spancategorizer#pipe) delegate to the
 | |
| [`predict`](/api/spancategorizer#predict) and
 | |
| [`set_annotations`](/api/spancategorizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > for doc in spancat.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## SpanCategorizer.initialize {#initialize tag="method"}
 | |
| 
 | |
| Initialize the component for training. `get_examples` should be a function that
 | |
| returns an iterable of [`Example`](/api/example) objects. The data examples are
 | |
| used to **initialize the model** of the component and can either be the full
 | |
| training data or a representative sample. Initialization includes validating the
 | |
| network,
 | |
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | |
| setting up the label scheme based on the data. This method is typically called
 | |
| by [`Language.initialize`](/api/language#initialize) and lets you customize
 | |
| arguments it receives via the
 | |
| [`[initialize.components]`](/api/data-formats#config-initialize) block in the
 | |
| config.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.initialize(lambda: [], nlp=nlp)
 | |
| > ```
 | |
| >
 | |
| > ```ini
 | |
| > ### config.cfg
 | |
| > [initialize.components.spancat]
 | |
| >
 | |
| > [initialize.components.spancat.labels]
 | |
| > @readers = "spacy.read_labels.v1"
 | |
| > path = "corpus/labels/spancat.json
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                                                                                                                                                                                                                                                |
 | |
| | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~                                                                                                                                                                                                                                                                      |
 | |
| | _keyword-only_ |                                                                                                                                                                                                                                                                                                                                                                                                            |
 | |
| | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                                                                                                                                                                                                                                                       |
 | |
| | `labels`       | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |
 | |
| 
 | |
| ## SpanCategorizer.predict {#predict tag="method"}
 | |
| 
 | |
| Apply the component's model to a batch of [`Doc`](/api/doc) objects without
 | |
| modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > scores = spancat.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                 |
 | |
| | ----------- | ------------------------------------------- |
 | |
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | |
| | **RETURNS** | The model's prediction for each document.   |
 | |
| 
 | |
| ## SpanCategorizer.set_annotations {#set_annotations tag="method"}
 | |
| 
 | |
| Modify a batch of [`Doc`](/api/doc) objects using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > scores = spancat.predict(docs)
 | |
| > spancat.set_annotations(docs, scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                               |
 | |
| | -------- | --------------------------------------------------------- |
 | |
| | `docs`   | The documents to modify. ~~Iterable[Doc]~~                |
 | |
| | `scores` | The scores to set, produced by `SpanCategorizer.predict`. |
 | |
| 
 | |
| ## SpanCategorizer.update {#update tag="method"}
 | |
| 
 | |
| Learn from a batch of [`Example`](/api/example) objects containing the
 | |
| predictions and gold-standard annotations, and update the component's model.
 | |
| Delegates to [`predict`](/api/spancategorizer#predict) and
 | |
| [`get_loss`](/api/spancategorizer#get_loss).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > optimizer = nlp.initialize()
 | |
| > losses = spancat.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | |
| 
 | |
| ## SpanCategorizer.get_loss {#get_loss tag="method"}
 | |
| 
 | |
| Find the loss and gradient of loss for the batch of documents and their
 | |
| predicted scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > scores = spancat.predict([eg.predicted for eg in examples])
 | |
| > loss, d_loss = spancat.get_loss(examples, scores)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                 |
 | |
| | ----------- | --------------------------------------------------------------------------- |
 | |
| | `examples`  | The batch of examples. ~~Iterable[Example]~~                                |
 | |
| | `scores`    | Scores representing the model's predictions.                                |
 | |
| | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
 | |
| 
 | |
| ## SpanCategorizer.score {#score tag="method"}
 | |
| 
 | |
| Score a batch of examples.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > scores = spancat.score(examples)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                            |
 | |
| | -------------- | ---------------------------------------------------------------------------------------------------------------------- |
 | |
| | `examples`     | The examples to score. ~~Iterable[Example]~~                                                                           |
 | |
| | _keyword-only_ |                                                                                                                        |
 | |
| | **RETURNS**    | The scores, produced by [`Scorer.score_spans`](/api/scorer#score_spans). ~~Dict[str, Union[float, Dict[str, float]]]~~ |
 | |
| 
 | |
| ## SpanCategorizer.create_optimizer {#create_optimizer tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > optimizer = spancat.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                  |
 | |
| | ----------- | ---------------------------- |
 | |
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | |
| 
 | |
| ## SpanCategorizer.use_params {#use_params tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model to use the given parameter values.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > with spancat.use_params(optimizer.averages):
 | |
| >     spancat.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                        |
 | |
| | -------- | -------------------------------------------------- |
 | |
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | |
| 
 | |
| ## SpanCategorizer.add_label {#add_label tag="method"}
 | |
| 
 | |
| Add a new label to the pipe. Raises an error if the output dimension is already
 | |
| set, or if the model has already been fully [initialized](#initialize). Note
 | |
| that you don't have to call this method if you provide a **representative data
 | |
| sample** to the [`initialize`](#initialize) method. In this case, all labels
 | |
| found in the sample will be automatically added to the model, and the output
 | |
| dimension will be [inferred](/usage/layers-architectures#thinc-shape-inference)
 | |
| automatically.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.add_label("MY_LABEL")
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                 |
 | |
| | ----------- | ----------------------------------------------------------- |
 | |
| | `label`     | The label to add. ~~str~~                                   |
 | |
| | **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | |
| 
 | |
| ## SpanCategorizer.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.to_disk("/path/to/spancat")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## SpanCategorizer.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.from_disk("/path/to/spancat")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `SpanCategorizer` object. ~~SpanCategorizer~~                                      |
 | |
| 
 | |
| ## SpanCategorizer.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat_bytes = spancat.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `SpanCategorizer` object. ~~bytes~~                              |
 | |
| 
 | |
| ## SpanCategorizer.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat_bytes = spancat.to_bytes()
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.from_bytes(spancat_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `SpanCategorizer` object. ~~SpanCategorizer~~                                           |
 | |
| 
 | |
| ## SpanCategorizer.labels {#labels tag="property"}
 | |
| 
 | |
| The labels currently added to the component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat.add_label("MY_LABEL")
 | |
| > assert "MY_LABEL" in spancat.labels
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                            |
 | |
| | ----------- | ------------------------------------------------------ |
 | |
| | **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ |
 | |
| 
 | |
| ## SpanCategorizer.label_data {#label_data tag="property"}
 | |
| 
 | |
| The labels currently added to the component and their internal meta information.
 | |
| This is the data generated by [`init labels`](/api/cli#init-labels) and used by
 | |
| [`SpanCategorizer.initialize`](/api/spancategorizer#initialize) to initialize
 | |
| the model with a pre-defined label set.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > labels = spancat.label_data
 | |
| > spancat.initialize(lambda: [], nlp=nlp, labels=labels)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                |
 | |
| | ----------- | ---------------------------------------------------------- |
 | |
| | **RETURNS** | The label data added to the component. ~~Tuple[str, ...]~~ |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = spancat.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 | |
| 
 | |
| ## Suggesters {#suggesters tag="registered functions" source="spacy/pipeline/spancat.py"}
 | |
| 
 | |
| ### spacy.ngram_suggester.v1 {#ngram_suggester}
 | |
| 
 | |
| > #### Example Config
 | |
| >
 | |
| > ```ini
 | |
| > [components.spancat.suggester]
 | |
| > @misc = "spacy.ngram_suggester.v1"
 | |
| > sizes = [1, 2, 3]
 | |
| > ```
 | |
| 
 | |
| Suggest all spans of the given lengths. Spans are returned as a ragged array of
 | |
| integers. The array has two columns, indicating the start and end position.
 | |
| 
 | |
| | Name        | Description                                                                                                          |
 | |
| | ----------- | -------------------------------------------------------------------------------------------------------------------- |
 | |
| | `sizes`     | The phrase lengths to suggest. For example, `[1, 2]` will suggest phrases consisting of 1 or 2 tokens. ~~List[int]~~ |
 | |
| | **CREATES** | The suggester function. ~~Callable[[List[Doc]], Ragged]~~                                                            |
 |