18 KiB
title | tag | source | new | teaser | api_base_class | api_string_name | api_trainable |
---|---|---|---|---|---|---|---|
SentenceRecognizer | class | spacy/pipeline/senter.pyx | 3 | Pipeline component for sentence segmentation | /api/tagger | senter | true |
A trainable pipeline component for sentence segmentation. For a simpler,
ruse-based strategy, see the Sentencizer
.
Config and implementation
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
config
argument on nlp.add_pipe
or in your
config.cfg
for training. See the
model architectures documentation for details on the
architectures and their arguments and hyperparameters.
Example
from spacy.pipeline.senter import DEFAULT_SENTER_MODEL config = {"model": DEFAULT_SENTER_MODEL,} nlp.add_pipe("senter", config=config)
Setting | Type | Description | Default |
---|---|---|---|
model |
Model |
The model to use. | Tagger |
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/senter.pyx
SentenceRecognizer.__init__
Initialize the sentence recognizer.
Example
# Construction via add_pipe with default model senter = nlp.add_pipe("senter") # Construction via create_pipe with custom model config = {"model": {"@architectures": "my_senter"}} senter = nlp.add_pipe("senter", config=config) # Construction from class from spacy.pipeline import SentenceRecognizer senter = SentenceRecognizer(nlp.vocab, model)
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
nlp.add_pipe
.
Name | Type | Description |
---|---|---|
vocab |
Vocab |
The shared vocabulary. |
model |
Model |
The Model powering the pipeline component. |
name |
str | String name of the component instance. Used to add entries to the losses during training. |
SentenceRecognizer.__call__
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the nlp
object is called on a text
and all pipeline components are applied to the Doc
in order. Both
__call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
doc = nlp("This is a sentence.") senter = nlp.add_pipe("senter") # This usually happens under the hood processed = senter(doc)
Name | Type | Description |
---|---|---|
doc |
Doc |
The document to process. |
RETURNS | Doc |
The processed document. |
SentenceRecognizer.pipe
Apply the pipe to a stream of documents. This usually happens under the hood
when the nlp
object is called on a text and all pipeline components are
applied to the Doc
in order. Both __call__
and pipe
delegate to the
predict
and
set_annotations
methods.
Example
senter = nlp.add_pipe("senter") for doc in senter.pipe(docs, batch_size=50): pass
Name | Type | Description |
---|---|---|
stream |
Iterable[Doc] |
A stream of documents. |
keyword-only | ||
batch_size |
int | The number of texts to buffer. Defaults to 128 . |
YIELDS | Doc |
Processed documents in the order of the original text. |
SentenceRecognizer.begin_training
Initialize the pipe for training, using data examples if available. Returns an
Optimizer
object.
Example
senter = nlp.add_pipe("senter") optimizer = senter.begin_training(pipeline=nlp.pipeline)
Name | Type | Description |
---|---|---|
get_examples |
Callable[[], Iterable[Example]] |
Optional function that returns gold-standard annotations in the form of Example objects. |
keyword-only | ||
pipeline |
List[Tuple[str, Callable]] |
Optional list of pipeline components that this component is part of. |
sgd |
Optimizer |
An optional optimizer. Will be created via create_optimizer if not set. |
RETURNS | Optimizer |
The optimizer. |
SentenceRecognizer.predict
Apply the component's model to a batch of Doc
objects, without
modifying them.
Example
senter = nlp.add_pipe("senter") scores = senter.predict([doc1, doc2])
Name | Type | Description |
---|---|---|
docs |
Iterable[Doc] |
The documents to predict. |
RETURNS | - | The model's prediction for each document. |
SentenceRecognizer.set_annotations
Modify a batch of Doc
objects, using pre-computed scores.
Example
senter = nlp.add_pipe("senter") scores = senter.predict([doc1, doc2]) senter.set_annotations([doc1, doc2], scores)
Name | Type | Description |
---|---|---|
docs |
Iterable[Doc] |
The documents to modify. |
scores |
- | The scores to set, produced by SentenceRecognizer.predict . |
SentenceRecognizer.update
Learn from a batch of Example
objects containing the
predictions and gold-standard annotations, and update the component's model.
Delegates to predict
and
get_loss
.
Example
senter = nlp.add_pipe("senter") optimizer = nlp.begin_training() losses = senter.update(examples, sgd=optimizer)
Name | Type | Description |
---|---|---|
examples |
Iterable[Example] |
A batch of Example objects to learn from. |
keyword-only | ||
drop |
float | The dropout rate. |
set_annotations |
bool | Whether or not to update the Example objects with the predictions, delegating to set_annotations . |
sgd |
Optimizer |
The optimizer. |
losses |
Dict[str, float] |
Optional record of the loss during training. The value keyed by the model's name is updated. |
RETURNS | Dict[str, float] |
The updated losses dictionary. |
SentenceRecognizer.rehearse
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the current model to make predictions similar to an initial model, to try to address the "catastrophic forgetting" problem. This feature is experimental.
Example
senter = nlp.add_pipe("senter") optimizer = nlp.resume_training() losses = senter.rehearse(examples, sgd=optimizer)
Name | Type | Description |
---|---|---|
examples |
Iterable[Example] |
A batch of Example objects to learn from. |
keyword-only | ||
drop |
float | The dropout rate. |
sgd |
Optimizer |
The optimizer. |
losses |
Dict[str, float] |
Optional record of the loss during training. Updated using the component name as the key. |
RETURNS | Dict[str, float] |
The updated losses dictionary. |
SentenceRecognizer.get_loss
Find the loss and gradient of loss for the batch of documents and their predicted scores.
Example
senter = nlp.add_pipe("senter") scores = senter.predict([eg.predicted for eg in examples]) loss, d_loss = senter.get_loss(examples, scores)
Name | Type | Description |
---|---|---|
examples |
Iterable[Example] |
The batch of examples. |
scores |
- | Scores representing the model's predictions. |
RETURNS | Tuple[float, float] |
The loss and the gradient, i.e. (loss, gradient) . |
SentenceRecognizer.score
Score a batch of examples.
Example
scores = senter.score(examples)
Name | Type | Description |
---|---|---|
examples |
Iterable[Example] |
The examples to score. |
RETURNS | Dict[str, Any] |
The scores, produced by Scorer.score_spans . |
SentenceRecognizer.create_optimizer
Create an optimizer for the pipeline component.
Example
senter = nlp.add_pipe("senter") optimizer = senter.create_optimizer()
Name | Type | Description |
---|---|---|
RETURNS | Optimizer |
The optimizer. |
SentenceRecognizer.use_params
Modify the pipe's model, to use the given parameter values. At the end of the context, the original parameters are restored.
Example
senter = nlp.add_pipe("senter") with senter.use_params(optimizer.averages): senter.to_disk("/best_model")
Name | Type | Description |
---|---|---|
params |
dict | The parameter values to use in the model. |
SentenceRecognizer.to_disk
Serialize the pipe to disk.
Example
senter = nlp.add_pipe("senter") senter.to_disk("/path/to/senter")
Name | Type | Description |
---|---|---|
path |
str / Path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. |
keyword-only | ||
exclude |
Iterable[str] |
String names of serialization fields to exclude. |
SentenceRecognizer.from_disk
Load the pipe from disk. Modifies the object in place and returns it.
Example
senter = nlp.add_pipe("senter") senter.from_disk("/path/to/senter")
Name | Type | Description |
---|---|---|
path |
str / Path |
A path to a directory. Paths may be either strings or Path -like objects. |
keyword-only | ||
exclude |
Iterable[str] |
String names of serialization fields to exclude. |
RETURNS | SentenceRecognizer |
The modified SentenceRecognizer object. |
SentenceRecognizer.to_bytes
Example
senter = nlp.add_pipe("senter") senter_bytes = senter.to_bytes()
Serialize the pipe to a bytestring.
Name | Type | Description |
---|---|---|
keyword-only | ||
exclude |
Iterable[str] |
String names of serialization fields to exclude. |
RETURNS | bytes | The serialized form of the SentenceRecognizer object. |
SentenceRecognizer.from_bytes
Load the pipe from a bytestring. Modifies the object in place and returns it.
Example
senter_bytes = senter.to_bytes() senter = nlp.add_pipe("senter") senter.from_bytes(senter_bytes)
Name | Type | Description |
---|---|---|
bytes_data |
bytes | The data to load from. |
keyword-only | ||
exclude |
Iterable[str] |
String names of serialization fields to exclude. |
RETURNS | SentenceRecognizer |
The SentenceRecognizer object. |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Example
data = senter.to_disk("/path", exclude=["vocab"])
Name | Description |
---|---|
vocab |
The shared Vocab . |
cfg |
The config file. You usually don't want to exclude this. |
model |
The binary model data. You usually don't want to exclude this. |