mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-29 03:16:31 +03:00
324 lines
16 KiB
Markdown
324 lines
16 KiB
Markdown
---
|
|
title: Tok2Vec
|
|
source: spacy/pipeline/tok2vec.py
|
|
new: 3
|
|
teaser: null
|
|
api_base_class: /api/pipe
|
|
api_string_name: tok2vec
|
|
api_trainable: true
|
|
---
|
|
|
|
Apply a "token-to-vector" model and set its outputs in the `Doc.tensor`
|
|
attribute. This is mostly useful to **share a single subnetwork** between
|
|
multiple components, e.g. to have one embedding and CNN network shared between a
|
|
[`DependencyParser`](/api/dependencyparser), [`Tagger`](/api/tagger) and
|
|
[`EntityRecognizer`](/api/entityrecognizer).
|
|
|
|
In order to use the `Tok2Vec` predictions, subsequent components should use the
|
|
[Tok2VecListener](/api/architectures#Tok2VecListener) layer as the tok2vec
|
|
subnetwork of their model. This layer will read data from the `doc.tensor`
|
|
attribute during prediction. During training, the `Tok2Vec` component will save
|
|
its prediction and backprop callback for each batch, so that the subsequent
|
|
components can backpropagate to the shared weights. This implementation is used
|
|
because it allows us to avoid relying on object identity within the models to
|
|
achieve the parameter sharing.
|
|
|
|
## Config and implementation {#config}
|
|
|
|
The default config is defined by the pipeline component factory and describes
|
|
how the component should be configured. You can override its settings via the
|
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
|
[`config.cfg` for training](/usage/training#config). See the
|
|
[model architectures](/api/architectures) documentation for details on the
|
|
architectures and their arguments and hyperparameters.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
|
> config = {"model": DEFAULT_TOK2VEC_MODEL}
|
|
> nlp.add_pipe("tok2vec", config=config)
|
|
> ```
|
|
|
|
| Setting | Type | Description | Default |
|
|
| ------- | ------------------------------------------ | ----------------------------------------------------------------------- | ----------------------------------------------- |
|
|
| `model` | [`Model`](https://thinc.ai/docs/api-model) | **Input:** `List[Doc]`. **Output:** `List[Floats2d]`. The model to use. | [HashEmbedCNN](/api/architectures#HashEmbedCNN) |
|
|
|
|
```python
|
|
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/tok2vec.py
|
|
```
|
|
|
|
## Tok2Vec.\_\_init\_\_ {#init tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction via add_pipe with default model
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
>
|
|
> # Construction via add_pipe with custom model
|
|
> config = {"model": {"@architectures": "my_tok2vec"}}
|
|
> parser = nlp.add_pipe("tok2vec", config=config)
|
|
>
|
|
> # Construction from class
|
|
> from spacy.pipeline import Tok2Vec
|
|
> tok2vec = Tok2Vec(nlp.vocab, model)
|
|
> ```
|
|
|
|
Create a new pipeline instance. In your application, you would normally use a
|
|
shortcut for this and instantiate the component using its string name and
|
|
[`nlp.add_pipe`](/api/language#create_pipe).
|
|
|
|
| Name | Type | Description |
|
|
| ------- | ------------------------------------------ | ------------------------------------------------------------------------------------------- |
|
|
| `vocab` | `Vocab` | The shared vocabulary. |
|
|
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
|
|
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
|
|
|
|
## Tok2Vec.\_\_call\_\_ {#call tag="method"}
|
|
|
|
Apply the pipe to one document and add context-sensitive embeddings to the
|
|
`Doc.tensor` attribute, allowing them to be used as features by downstream
|
|
components. The document is modified in place, and returned. This usually
|
|
happens under the hood when the `nlp` object is called on a text and all
|
|
pipeline components are applied to the `Doc` in order. Both
|
|
[`__call__`](/api/tok2vec#call) and [`pipe`](/api/tok2vec#pipe) delegate to the
|
|
[`predict`](/api/tok2vec#predict) and
|
|
[`set_annotations`](/api/tok2vec#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc = nlp("This is a sentence.")
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> # This usually happens under the hood
|
|
> processed = tok2vec(doc)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ------------------------ |
|
|
| `doc` | `Doc` | The document to process. |
|
|
| **RETURNS** | `Doc` | The processed document. |
|
|
|
|
## Tok2Vec.pipe {#pipe tag="method"}
|
|
|
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
|
when the `nlp` object is called on a text and all pipeline components are
|
|
applied to the `Doc` in order. Both [`__call__`](/api/tok2vec#call) and
|
|
[`pipe`](/api/tok2vec#pipe) delegate to the [`predict`](/api/tok2vec#predict)
|
|
and [`set_annotations`](/api/tok2vec#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> for doc in tok2vec.pipe(docs, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | ----------------------------------------------------- |
|
|
| `stream` | `Iterable[Doc]` | A stream of documents. |
|
|
| _keyword-only_ | | |
|
|
| `batch_size` | int | The number of documents to buffer. Defaults to `128`. |
|
|
| **YIELDS** | `Doc` | The processed documents in order. |
|
|
|
|
## Tok2Vec.begin_training {#begin_training tag="method"}
|
|
|
|
Initialize the pipe for training, using data examples if available. Returns an
|
|
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> optimizer = tok2vec.begin_training(pipeline=nlp.pipeline)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------- |
|
|
| `get_examples` | `Callable[[], Iterable[Example]]` | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. |
|
|
| _keyword-only_ | | |
|
|
| `pipeline` | `List[Tuple[str, Callable]]` | Optional list of pipeline components that this component is part of. |
|
|
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/tok2vec#create_optimizer) if not set. |
|
|
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
|
|
|
## Tok2Vec.predict {#predict tag="method"}
|
|
|
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
|
modifying them.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> scores = tok2vec.predict([doc1, doc2])
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------- | ----------------------------------------- |
|
|
| `docs` | `Iterable[Doc]` | The documents to predict. |
|
|
| **RETURNS** | - | The model's prediction for each document. |
|
|
|
|
## Tok2Vec.set_annotations {#set_annotations tag="method"}
|
|
|
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> scores = tok2vec.predict(docs)
|
|
> tok2vec.set_annotations(docs, scores)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------- | --------------- | ------------------------------------------------- |
|
|
| `docs` | `Iterable[Doc]` | The documents to modify. |
|
|
| `scores` | - | The scores to set, produced by `Tok2Vec.predict`. |
|
|
|
|
## Tok2Vec.update {#update tag="method"}
|
|
|
|
Learn from a batch of [`Example`](/api/example) objects containing the
|
|
predictions and gold-standard annotations, and update the component's model.
|
|
Delegates to [`predict`](/api/tok2vec#predict).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> optimizer = nlp.begin_training()
|
|
> losses = tok2vec.update(examples, sgd=optimizer)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------------- | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
|
|
| _keyword-only_ | | |
|
|
| `drop` | float | The dropout rate. |
|
|
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/tok2vec#set_annotations). |
|
|
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
|
| `losses` | `Dict[str, float]` | Optional record of the loss during training. Updated using the component name as the key. |
|
|
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
|
|
|
|
## Tok2Vec.create_optimizer {#create_optimizer tag="method"}
|
|
|
|
Create an optimizer for the pipeline component.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> optimizer = tok2vec.create_optimizer()
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------------------------------------------- | -------------- |
|
|
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
|
|
|
## Tok2Vec.use_params {#use_params tag="method, contextmanager"}
|
|
|
|
Modify the pipe's model, to use the given parameter values. At the end of the
|
|
context, the original parameters are restored.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> with tok2vec.use_params(optimizer.averages):
|
|
> tok2vec.to_disk("/best_model")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------- | ---- | ----------------------------------------- |
|
|
| `params` | dict | The parameter values to use in the model. |
|
|
|
|
## Tok2Vec.to_disk {#to_disk tag="method"}
|
|
|
|
Serialize the pipe to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> tok2vec.to_disk("/path/to/tok2vec")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
|
|
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
|
| _keyword-only_ | | |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
|
|
## Tok2Vec.from_disk {#from_disk tag="method"}
|
|
|
|
Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> tok2vec.from_disk("/path/to/tok2vec")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | -------------------------------------------------------------------------- |
|
|
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
|
| _keyword-only_ | | |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `Tok2Vec` | The modified `Tok2Vec` object. |
|
|
|
|
## Tok2Vec.to_bytes {#to_bytes tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> tok2vec_bytes = tok2vec.to_bytes()
|
|
> ```
|
|
|
|
Serialize the pipe to a bytestring.
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
|
| _keyword-only_ | | |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | bytes | The serialized form of the `Tok2Vec` object. |
|
|
|
|
## Tok2Vec.from_bytes {#from_bytes tag="method"}
|
|
|
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok2vec_bytes = tok2vec.to_bytes()
|
|
> tok2vec = nlp.add_pipe("tok2vec")
|
|
> tok2vec.from_bytes(tok2vec_bytes)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
|
| `bytes_data` | bytes | The data to load from. |
|
|
| _keyword-only_ | | |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `Tok2Vec` | The `Tok2Vec` object. |
|
|
|
|
## Serialization fields {#serialization-fields}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = tok2vec.to_disk("/path", exclude=["vocab"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------- | -------------------------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `cfg` | The config file. You usually don't want to exclude this. |
|
|
| `model` | The binary model data. You usually don't want to exclude this. |
|