1
1
mirror of https://github.com/explosion/spaCy.git synced 2025-01-18 05:24:12 +03:00
spaCy/examples/keras_parikh_entailment/README.md
Ines Montani d33953037e
💫 Port master changes over to develop ()
* Create aryaprabhudesai.md ()

* Update _install.jade ()

Typo fix: "models" -> "model"

* Add FAC to spacy.explain (resolves )

* Remove docstrings for deprecated arguments (see )

* When calling getoption() in conftest.py, pass a default option ()

* When calling getoption() in conftest.py, pass a default option

This is necessary to allow testing an installed spacy by running:

  pytest --pyargs spacy

* Add contributor agreement

* update bengali token rules for hyphen and digits ()

* Less norm computations in token similarity ()

* Less norm computations in token similarity

* Contributor agreement

* Remove ')' for clarity ()

Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know.

* added contributor agreement for mbkupfer ()

* Basic support for Telugu language ()

* Lex _attrs for polish language ()

* Signed spaCy contributor agreement

* Added polish version of english lex_attrs

* Introduces a bulk merge function, in order to solve issue  ()

* Fix comment

* Introduce bulk merge to increase performance on many span merges

* Sign contributor agreement

* Implement pull request suggestions

* Describe converters more explicitly (see )

* Add multi-threading note to Language.pipe (resolves ) [ci skip]

* Fix formatting

* Fix dependency scheme docs (closes ) [ci skip]

* Don't set stop word in example (closes ) [ci skip]

* Add words to portuguese language _num_words ()

* Add words to portuguese language _num_words

* Add words to portuguese language _num_words

* Update Indonesian model ()

* adding e-KTP in tokenizer exceptions list

* add exception token

* removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception

* add tokenizer exceptions list

* combining base_norms with norm_exceptions

* adding norm_exception

* fix double key in lemmatizer

* remove unused import on punctuation.py

* reformat stop_words to reduce number of lines, improve readibility

* updating tokenizer exception

* implement is_currency for lang/id

* adding orth_first_upper in tokenizer_exceptions

* update the norm_exception list

* remove bunch of abbreviations

* adding contributors file

* Fixed spaCy+Keras example ()

* bug fixes in keras example

* created contributor agreement

* Adding French hyphenated first name ()

* Fix typo (closes )

* Fix typo () [ci skip]

Fixed typo on line 6 "regcognizer --> recognizer"

* Adding basic support for Sinhala language. ()

* adding Sinhala language package, stop words, examples and lex_attrs.

* Adding contributor agreement

* Updating contributor agreement

* Also include lowercase norm exceptions

* Fix error ()

* Fix error
ValueError: cannot resize an array that references or is referenced
by another array in this way.  Use the resize function

* added spaCy Contributor Agreement

* Add charlax's contributor agreement ()

* agreement of contributor, may I introduce a tiny pl languge contribution ()

* Contributors agreement

* Contributors agreement

* Contributors agreement

* Add jupyter=True to displacy.render in documentation ()

* Revert "Also include lowercase norm exceptions"

This reverts commit 70f4e8adf3.

* Remove deprecated encoding argument to msgpack

* Set up dependency tree pattern matching skeleton ()

* Fix bug when too many entity types. Fixes 

* Fix Python 2 test failure

* Require older msgpack-numpy

* Restore encoding arg on msgpack-numpy

* Try to fix version pin for msgpack-numpy

* Update Portuguese Language ()

* Add words to portuguese language _num_words

* Add words to portuguese language _num_words

* Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols

* Extended punctuation and norm_exceptions in the Portuguese language

* Correct error in spacy universe docs concerning spacy-lookup ()

* Update Keras Example for (Parikh et al, 2016) implementation  ()

* bug fixes in keras example

* created contributor agreement

* baseline for Parikh model

* initial version of parikh 2016 implemented

* tested asymmetric models

* fixed grevious error in normalization

* use standard SNLI test file

* begin to rework parikh example

* initial version of running example

* start to document the new version

* start to document the new version

* Update Decompositional Attention.ipynb

* fixed calls to similarity

* updated the README

* import sys package duh

* simplified indexing on mapping word to IDs

* stupid python indent error

* added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround

* Fix typo (closes ) [ci skip]

* Update regex version dependency

* Set version to 2.0.13.dev3

* Skip seemingly problematic test

* Remove problematic test

* Try previous version of regex

* Revert "Remove problematic test"

This reverts commit bdebbef455.

* Unskip test

* Try older version of regex

* 💫 Update training examples and use minibatching ()

<!--- Provide a general summary of your changes in the title. -->

## Description
Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results.

### Types of change
enhancements

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Visual C++ link updated () (closes ) [ci skip]

* New landing page

* Add contribution agreement

* Correcting lang/ru/examples.py ()

* Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement

* Correct some grammatical inaccuracies in lang\ru\examples.py

* Move contributor agreement to separate file

* Set version to 2.0.13.dev4

* Add Persian(Farsi) language support ()

* Also include lowercase norm exceptions

* Remove in favour of https://github.com/explosion/spaCy/graphs/contributors

* Rule-based French Lemmatizer ()

<!--- Provide a general summary of your changes in the title. -->

## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->

Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class.

### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->

- Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version.
- Add several files containing exhaustive list of words for each part of speech 
- Add some lemma rules
- Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX
- Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned
- Modify the lemmatize function to check in lookup table as a last resort
- Init files are updated so the model can support all the functionalities mentioned above
- Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [X] I have submitted the spaCy Contributor Agreement.
- [X] I ran the tests, and all new and existing tests passed.
- [X] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Set version to 2.0.13

* Fix formatting and consistency

* Update docs for new version [ci skip]

* Increment version [ci skip]

* Add info on wheels [ci skip]

* Adding "This is a sentence" example to Sinhala ()

* Add wheels badge

* Update badge [ci skip]

* Update README.rst [ci skip]

* Update murmurhash pin

* Increment version to 2.0.14.dev0

* Update GPU docs for v2.0.14

* Add wheel to setup_requires

* Import prefer_gpu and require_gpu functions from Thinc

* Add tests for prefer_gpu() and require_gpu()

* Update requirements and setup.py

* Workaround bug in thinc require_gpu

* Set version to v2.0.14

* Update push-tag script

* Unhack prefer_gpu

* Require thinc 6.10.6

* Update prefer_gpu and require_gpu docs [ci skip]

* Fix specifiers for GPU

* Set version to 2.0.14.dev1

* Set version to 2.0.14

* Update Thinc version pin

* Increment version

* Fix msgpack-numpy version pin

* Increment version

* Update version to 2.0.16

* Update version [ci skip]

* Redundant ')' in the Stop words' example ()

<!--- Provide a general summary of your changes in the title. -->

## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->

### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Documentation improvement regarding joblib and SO ()

Some documentation improvements

## Description
1. Fixed the dead URL to joblib
2. Fixed Stack Overflow brand name (with space)

### Types of change
Documentation

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* raise error when setting overlapping entities as doc.ents ()

* Fix out-of-bounds access in NER training

The helper method state.B(1) gets the index of the first token of the
buffer, or -1 if no such token exists. Normally this is safe because we
pass this to functions like state.safe_get(), which returns an empty
token. Here we used it directly as an array index, which is not okay!

This error may have been the cause of out-of-bounds access errors during
training. Similar errors may still be around, so much be hunted down.
Hunting this one down took a long time...I printed out values across
training runs and diffed, looking for points of divergence between
runs, when no randomness should be allowed.

* Change PyThaiNLP Url ()

* Fix missing comma

* Add example showing a fix-up rule for space entities

* Set version to 2.0.17.dev0

* Update regex version

* Revert "Update regex version"

This reverts commit 62358dd867.

* Try setting older regex version, to align with conda

* Set version to 2.0.17

* Add spacy-js to universe [ci-skip]

* Add spacy-raspberry to universe (closes )

* Add script to validate universe json [ci skip]

* Removed space in docs + added contributor indo ()

* - removed unneeded space in documentation

* - added contributor info

* Allow input text of length up to max_length, inclusive ()

* Include universe spec for spacy-wordnet component ()

* feat: include universe spec for spacy-wordnet component

* chore: include spaCy contributor agreement

* Minor formatting changes [ci skip]

* Fix image [ci skip]

Twitter URL doesn't work on live site

* Check if the word is in one of the regular lists specific to each POS ()

* 💫 Create random IDs for SVGs to prevent ID clashes ()

Resolves .

## Description
Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.)

### Types of change
bug fix

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Fix typo [ci skip]

* fixes symbolic link on py3 and windows ()

* fixes symbolic link on py3 and windows
during setup of spacy using command
python -m spacy link en_core_web_sm en
closes 

* Update spacy/compat.py

Co-Authored-By: cicorias <cicorias@users.noreply.github.com>

* Fix formatting

* Update universe [ci skip]

* Catalan Language Support ()

* Catalan language Support

* Ddding Catalan to documentation

* Sort languages alphabetically [ci skip]

* Update tests for pytest 4.x ()

<!--- Provide a general summary of your changes in the title. -->

## Description
- [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize))
- [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here)

### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Fix regex pin to harmonize with conda ()

* Update README.rst

* Fix bug where Vocab.prune_vector did not use 'batch_size' ()

Fixes 

* Fix typo

* Fix typo

* Remove duplicate file

* Require thinc 7.0.0.dev2

Fixes bug in gpu_ops that would use cupy instead of numpy on CPU

* Add missing import

* Fix error IDs

* Fix tests
2018-11-29 16:30:29 +01:00

115 lines
5.1 KiB
Markdown

<a href="https://explosion.ai"><img src="https://explosion.ai/assets/img/logo.svg" width="125" height="125" align="right" /></a>
# A decomposable attention model for Natural Language Inference
**by Matthew Honnibal, [@honnibal](https://github.com/honnibal)**
**Updated for spaCy 2.0+ and Keras 2.2.2+ by John Stewart, [@free-variation](https://github.com/free-variation)**
This directory contains an implementation of the entailment prediction model described
by [Parikh et al. (2016)](https://arxiv.org/pdf/1606.01933.pdf). The model is notable
for its competitive performance with very few parameters.
The model is implemented using [Keras](https://keras.io/) and [spaCy](https://spacy.io).
Keras is used to build and train the network. spaCy is used to load
the [GloVe](http://nlp.stanford.edu/projects/glove/) vectors, perform the
feature extraction, and help you apply the model at run-time. The following
demo code shows how the entailment model can be used at runtime, once the
hook is installed to customise the `.similarity()` method of spaCy's `Doc`
and `Span` objects:
```python
def demo(shape):
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(KerasSimilarityShim.load(nlp.path / 'similarity', nlp, shape[0]))
doc1 = nlp(u'The king of France is bald.')
doc2 = nlp(u'France has no king.')
print("Sentence 1:", doc1)
print("Sentence 2:", doc2)
entailment_type, confidence = doc1.similarity(doc2)
print("Entailment type:", entailment_type, "(Confidence:", confidence, ")")
```
Which gives the output `Entailment type: contradiction (Confidence: 0.60604566)`, showing that
the system has definite opinions about Betrand Russell's [famous conundrum](https://users.drew.edu/jlenz/br-on-denoting.html)!
I'm working on a blog post to explain Parikh et al.'s model in more detail.
A [notebook](https://github.com/free-variation/spaCy/blob/master/examples/notebooks/Decompositional%20Attention.ipynb) is available that briefly explains this implementation.
I think it is a very interesting example of the attention mechanism, which
I didn't understand very well before working through this paper. There are
lots of ways to extend the model.
## What's where
| File | Description |
| --- | --- |
| `__main__.py` | The script that will be executed. Defines the CLI, the data reading, etc — all the boring stuff. |
| `spacy_hook.py` | Provides a class `KerasSimilarityShim` that lets you use an arbitrary function to customize spaCy's `doc.similarity()` method. Instead of the default average-of-vectors algorithm, when you call `doc1.similarity(doc2)`, you'll get the result of `your_model(doc1, doc2)`. |
| `keras_decomposable_attention.py` | Defines the neural network model. |
## Setting up
First, install [Keras](https://keras.io/), [spaCy](https://spacy.io) and the spaCy
English models (about 1GB of data):
```bash
pip install keras
pip install spacy
python -m spacy download en_vectors_web_lg
```
You'll also want to get Keras working on your GPU, and you will need a backend, such as TensorFlow or Theano.
This will depend on your set up, so you're mostly on your own for this step. If you're using AWS, try the
[NVidia AMI](https://aws.amazon.com/marketplace/pp/B00FYCDDTE). It made things pretty easy.
Once you've installed the dependencies, you can run a small preliminary test of
the Keras model:
```bash
py.test keras_parikh_entailment/keras_decomposable_attention.py
```
This compiles the model and fits it with some dummy data. You should see that
both tests passed.
Finally, download the [Stanford Natural Language Inference corpus](http://nlp.stanford.edu/projects/snli/).
## Running the example
You can run the `keras_parikh_entailment/` directory as a script, which executes the file
[`keras_parikh_entailment/__main__.py`](__main__.py). If you run the script without arguments
the usage is shown. Running it with `-h` explains the command line arguments.
The first thing you'll want to do is train the model:
```bash
python keras_parikh_entailment/ train -t <path to SNLI train JSON> -s <path to SNLI dev JSON>
```
Training takes about 300 epochs for full accuracy, and I haven't rerun the full
experiment since refactoring things to publish this example — please let me
know if I've broken something. You should get to at least 85% on the development data even after 10-15 epochs.
The other two modes demonstrate run-time usage. I never like relying on the accuracy printed
by `.fit()` methods. I never really feel confident until I've run a new process that loads
the model and starts making predictions, without access to the gold labels. I've therefore
included an `evaluate` mode.
```bash
python keras_parikh_entailment/ evaluate -s <path to SNLI train JSON>
```
Finally, there's also a little demo, which mostly exists to show
you how run-time usage will eventually look.
```bash
python keras_parikh_entailment/ demo
```
## Getting updates
We should have the blog post explaining the model ready before the end of the week. To get
notified when it's published, you can either follow me on [Twitter](https://twitter.com/honnibal)
or subscribe to our [mailing list](http://eepurl.com/ckUpQ5).