mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Add initial reproducibility tests * failing test for default_text_classifier (WIP) * track trouble to underlying tok2vec layer * add regression test for Issue 5551 * tests go green with https://github.com/explosion/thinc/pull/359 * update test * adding fixed seeds to HashEmbed layers, seems to fix the reproducility issue Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from thinc.api import chain, clone, concatenate, with_array, uniqued
 | 
						|
from thinc.api import Model, noop, with_padded, Maxout, expand_window
 | 
						|
from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM
 | 
						|
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
 | 
						|
 | 
						|
from ... import util
 | 
						|
from ...util import registry
 | 
						|
from ...ml import _character_embed
 | 
						|
from ...pipeline.tok2vec import Tok2VecListener
 | 
						|
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.Tok2VecTensors.v1")
 | 
						|
def tok2vec_tensors_v1(width):
 | 
						|
    tok2vec = Tok2VecListener("tok2vec", width=width)
 | 
						|
    return tok2vec
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.VocabVectors.v1")
 | 
						|
def get_vocab_vectors(name):
 | 
						|
    nlp = util.load_model(name)
 | 
						|
    return nlp.vocab.vectors
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.Tok2Vec.v1")
 | 
						|
def Tok2Vec(extract, embed, encode):
 | 
						|
    field_size = 0
 | 
						|
    if encode.attrs.get("receptive_field", None):
 | 
						|
        field_size = encode.attrs["receptive_field"]
 | 
						|
    with Model.define_operators({">>": chain, "|": concatenate}):
 | 
						|
        tok2vec = extract >> with_array(embed >> encode, pad=field_size)
 | 
						|
    tok2vec.set_dim("nO", encode.get_dim("nO"))
 | 
						|
    tok2vec.set_ref("embed", embed)
 | 
						|
    tok2vec.set_ref("encode", encode)
 | 
						|
    return tok2vec
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.Doc2Feats.v1")
 | 
						|
def Doc2Feats(columns):
 | 
						|
    return FeatureExtractor(columns)
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.HashEmbedCNN.v1")
 | 
						|
def hash_embed_cnn(
 | 
						|
    pretrained_vectors,
 | 
						|
    width,
 | 
						|
    depth,
 | 
						|
    embed_size,
 | 
						|
    maxout_pieces,
 | 
						|
    window_size,
 | 
						|
    subword_features,
 | 
						|
    dropout,
 | 
						|
):
 | 
						|
    # Does not use character embeddings: set to False by default
 | 
						|
    return build_Tok2Vec_model(
 | 
						|
        width=width,
 | 
						|
        embed_size=embed_size,
 | 
						|
        pretrained_vectors=pretrained_vectors,
 | 
						|
        conv_depth=depth,
 | 
						|
        bilstm_depth=0,
 | 
						|
        maxout_pieces=maxout_pieces,
 | 
						|
        window_size=window_size,
 | 
						|
        subword_features=subword_features,
 | 
						|
        char_embed=False,
 | 
						|
        nM=0,
 | 
						|
        nC=0,
 | 
						|
        dropout=dropout,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.HashCharEmbedCNN.v1")
 | 
						|
def hash_charembed_cnn(
 | 
						|
    pretrained_vectors,
 | 
						|
    width,
 | 
						|
    depth,
 | 
						|
    embed_size,
 | 
						|
    maxout_pieces,
 | 
						|
    window_size,
 | 
						|
    nM,
 | 
						|
    nC,
 | 
						|
    dropout,
 | 
						|
):
 | 
						|
    # Allows using character embeddings by setting nC, nM and char_embed=True
 | 
						|
    return build_Tok2Vec_model(
 | 
						|
        width=width,
 | 
						|
        embed_size=embed_size,
 | 
						|
        pretrained_vectors=pretrained_vectors,
 | 
						|
        conv_depth=depth,
 | 
						|
        bilstm_depth=0,
 | 
						|
        maxout_pieces=maxout_pieces,
 | 
						|
        window_size=window_size,
 | 
						|
        subword_features=False,
 | 
						|
        char_embed=True,
 | 
						|
        nM=nM,
 | 
						|
        nC=nC,
 | 
						|
        dropout=dropout,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
 | 
						|
def hash_embed_bilstm_v1(
 | 
						|
    pretrained_vectors,
 | 
						|
    width,
 | 
						|
    depth,
 | 
						|
    embed_size,
 | 
						|
    subword_features,
 | 
						|
    maxout_pieces,
 | 
						|
    dropout,
 | 
						|
):
 | 
						|
    # Does not use character embeddings: set to False by default
 | 
						|
    return build_Tok2Vec_model(
 | 
						|
        width=width,
 | 
						|
        embed_size=embed_size,
 | 
						|
        pretrained_vectors=pretrained_vectors,
 | 
						|
        bilstm_depth=depth,
 | 
						|
        conv_depth=0,
 | 
						|
        maxout_pieces=maxout_pieces,
 | 
						|
        window_size=1,
 | 
						|
        subword_features=subword_features,
 | 
						|
        char_embed=False,
 | 
						|
        nM=0,
 | 
						|
        nC=0,
 | 
						|
        dropout=dropout,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
 | 
						|
def hash_char_embed_bilstm_v1(
 | 
						|
    pretrained_vectors, width, depth, embed_size, maxout_pieces, nM, nC, dropout
 | 
						|
):
 | 
						|
    # Allows using character embeddings by setting nC, nM and char_embed=True
 | 
						|
    return build_Tok2Vec_model(
 | 
						|
        width=width,
 | 
						|
        embed_size=embed_size,
 | 
						|
        pretrained_vectors=pretrained_vectors,
 | 
						|
        bilstm_depth=depth,
 | 
						|
        conv_depth=0,
 | 
						|
        maxout_pieces=maxout_pieces,
 | 
						|
        window_size=1,
 | 
						|
        subword_features=False,
 | 
						|
        char_embed=True,
 | 
						|
        nM=nM,
 | 
						|
        nC=nC,
 | 
						|
        dropout=dropout,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
 | 
						|
def LayerNormalizedMaxout(width, maxout_pieces):
 | 
						|
    return Maxout(nO=width, nP=maxout_pieces, dropout=0.0, normalize=True)
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.MultiHashEmbed.v1")
 | 
						|
def MultiHashEmbed(
 | 
						|
    columns, width, rows, use_subwords, pretrained_vectors, mix, dropout
 | 
						|
):
 | 
						|
    norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=6)
 | 
						|
    if use_subwords:
 | 
						|
        prefix = HashEmbed(
 | 
						|
            nO=width, nV=rows // 2, column=columns.index("PREFIX"), dropout=dropout, seed=7
 | 
						|
        )
 | 
						|
        suffix = HashEmbed(
 | 
						|
            nO=width, nV=rows // 2, column=columns.index("SUFFIX"), dropout=dropout, seed=8
 | 
						|
        )
 | 
						|
        shape = HashEmbed(
 | 
						|
            nO=width, nV=rows // 2, column=columns.index("SHAPE"), dropout=dropout, seed=9
 | 
						|
        )
 | 
						|
 | 
						|
    if pretrained_vectors:
 | 
						|
        glove = StaticVectors(
 | 
						|
            vectors=pretrained_vectors.data,
 | 
						|
            nO=width,
 | 
						|
            column=columns.index(ID),
 | 
						|
            dropout=dropout,
 | 
						|
        )
 | 
						|
 | 
						|
    with Model.define_operators({">>": chain, "|": concatenate}):
 | 
						|
        if not use_subwords and not pretrained_vectors:
 | 
						|
            embed_layer = norm
 | 
						|
        else:
 | 
						|
            if use_subwords and pretrained_vectors:
 | 
						|
                concat_columns = glove | norm | prefix | suffix | shape
 | 
						|
            elif use_subwords:
 | 
						|
                concat_columns = norm | prefix | suffix | shape
 | 
						|
            else:
 | 
						|
                concat_columns = glove | norm
 | 
						|
 | 
						|
            embed_layer = uniqued(concat_columns >> mix, column=columns.index("ORTH"))
 | 
						|
 | 
						|
    return embed_layer
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.CharacterEmbed.v1")
 | 
						|
def CharacterEmbed(columns, width, rows, nM, nC, features, dropout):
 | 
						|
    norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=5)
 | 
						|
    chr_embed = _character_embed.CharacterEmbed(nM=nM, nC=nC)
 | 
						|
    with Model.define_operators({">>": chain, "|": concatenate}):
 | 
						|
        embed_layer = chr_embed | features >> with_array(norm)
 | 
						|
    embed_layer.set_dim("nO", nM * nC + width)
 | 
						|
    return embed_layer
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
 | 
						|
def MaxoutWindowEncoder(width, window_size, maxout_pieces, depth):
 | 
						|
    cnn = chain(
 | 
						|
        expand_window(window_size=window_size),
 | 
						|
        Maxout(
 | 
						|
            nO=width,
 | 
						|
            nI=width * ((window_size * 2) + 1),
 | 
						|
            nP=maxout_pieces,
 | 
						|
            dropout=0.0,
 | 
						|
            normalize=True,
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    model = clone(residual(cnn), depth)
 | 
						|
    model.set_dim("nO", width)
 | 
						|
    model.attrs["receptive_field"] = window_size * depth
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.MishWindowEncoder.v1")
 | 
						|
def MishWindowEncoder(width, window_size, depth):
 | 
						|
    cnn = chain(
 | 
						|
        expand_window(window_size=window_size),
 | 
						|
        Mish(nO=width, nI=width * ((window_size * 2) + 1)),
 | 
						|
        LayerNorm(width),
 | 
						|
    )
 | 
						|
    model = clone(residual(cnn), depth)
 | 
						|
    model.set_dim("nO", width)
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
 | 
						|
def TorchBiLSTMEncoder(width, depth):
 | 
						|
    import torch.nn
 | 
						|
 | 
						|
    # TODO FIX
 | 
						|
    from thinc.api import PyTorchRNNWrapper
 | 
						|
 | 
						|
    if depth == 0:
 | 
						|
        return noop()
 | 
						|
    return with_padded(
 | 
						|
        PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def build_Tok2Vec_model(
 | 
						|
    width,
 | 
						|
    embed_size,
 | 
						|
    pretrained_vectors,
 | 
						|
    window_size,
 | 
						|
    maxout_pieces,
 | 
						|
    subword_features,
 | 
						|
    char_embed,
 | 
						|
    nM,
 | 
						|
    nC,
 | 
						|
    conv_depth,
 | 
						|
    bilstm_depth,
 | 
						|
    dropout,
 | 
						|
) -> Model:
 | 
						|
    if char_embed:
 | 
						|
        subword_features = False
 | 
						|
    cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
 | 
						|
    with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
 | 
						|
        norm = HashEmbed(
 | 
						|
            nO=width, nV=embed_size, column=cols.index(NORM), dropout=None,
 | 
						|
            seed=0
 | 
						|
        )
 | 
						|
        if subword_features:
 | 
						|
            prefix = HashEmbed(
 | 
						|
                nO=width, nV=embed_size // 2, column=cols.index(PREFIX), dropout=None,
 | 
						|
                seed=1
 | 
						|
            )
 | 
						|
            suffix = HashEmbed(
 | 
						|
                nO=width, nV=embed_size // 2, column=cols.index(SUFFIX), dropout=None,
 | 
						|
                seed=2
 | 
						|
            )
 | 
						|
            shape = HashEmbed(
 | 
						|
                nO=width, nV=embed_size // 2, column=cols.index(SHAPE), dropout=None,
 | 
						|
                seed=3
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            prefix, suffix, shape = (None, None, None)
 | 
						|
        if pretrained_vectors is not None:
 | 
						|
            glove = StaticVectors(
 | 
						|
                vectors=pretrained_vectors.data,
 | 
						|
                nO=width,
 | 
						|
                column=cols.index(ID),
 | 
						|
                dropout=dropout,
 | 
						|
            )
 | 
						|
 | 
						|
            if subword_features:
 | 
						|
                columns = 5
 | 
						|
                embed = uniqued(
 | 
						|
                    (glove | norm | prefix | suffix | shape)
 | 
						|
                    >> Maxout(
 | 
						|
                        nO=width,
 | 
						|
                        nI=width * columns,
 | 
						|
                        nP=3,
 | 
						|
                        dropout=0.0,
 | 
						|
                        normalize=True,
 | 
						|
                    ),
 | 
						|
                    column=cols.index(ORTH),
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                columns = 2
 | 
						|
                embed = uniqued(
 | 
						|
                    (glove | norm)
 | 
						|
                    >> Maxout(
 | 
						|
                        nO=width,
 | 
						|
                        nI=width * columns,
 | 
						|
                        nP=3,
 | 
						|
                        dropout=0.0,
 | 
						|
                        normalize=True,
 | 
						|
                    ),
 | 
						|
                    column=cols.index(ORTH),
 | 
						|
                )
 | 
						|
        elif subword_features:
 | 
						|
            columns = 4
 | 
						|
            embed = uniqued(
 | 
						|
                concatenate(norm, prefix, suffix, shape)
 | 
						|
                >> Maxout(
 | 
						|
                    nO=width,
 | 
						|
                    nI=width * columns,
 | 
						|
                    nP=3,
 | 
						|
                    dropout=0.0,
 | 
						|
                    normalize=True,
 | 
						|
                ),
 | 
						|
                column=cols.index(ORTH),
 | 
						|
            )
 | 
						|
        elif char_embed:
 | 
						|
            embed = _character_embed.CharacterEmbed(nM=nM, nC=nC) | FeatureExtractor(
 | 
						|
                cols
 | 
						|
            ) >> with_array(norm)
 | 
						|
            reduce_dimensions = Maxout(
 | 
						|
                nO=width,
 | 
						|
                nI=nM * nC + width,
 | 
						|
                nP=3,
 | 
						|
                dropout=0.0,
 | 
						|
                normalize=True,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            embed = norm
 | 
						|
 | 
						|
        convolution = residual(
 | 
						|
            expand_window(window_size=window_size)
 | 
						|
            >> Maxout(
 | 
						|
                nO=width,
 | 
						|
                nI=width * ((window_size * 2) + 1),
 | 
						|
                nP=maxout_pieces,
 | 
						|
                dropout=0.0,
 | 
						|
                normalize=True,
 | 
						|
            )
 | 
						|
        )
 | 
						|
        if char_embed:
 | 
						|
            tok2vec = embed >> with_array(
 | 
						|
                reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            tok2vec = FeatureExtractor(cols) >> with_array(
 | 
						|
                embed >> convolution ** conv_depth, pad=conv_depth
 | 
						|
            )
 | 
						|
 | 
						|
        if bilstm_depth >= 1:
 | 
						|
            tok2vec = tok2vec >> PyTorchLSTM(
 | 
						|
                nO=width, nI=width, depth=bilstm_depth, bi=True
 | 
						|
            )
 | 
						|
        if tok2vec.has_dim("nO") is not False:
 | 
						|
            tok2vec.set_dim("nO", width)
 | 
						|
        tok2vec.set_ref("embed", embed)
 | 
						|
    return tok2vec
 |