mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-14 21:57:15 +03:00
433 lines
11 KiB
Cython
433 lines
11 KiB
Cython
from libc.string cimport memcpy
|
|
from libc.math cimport exp
|
|
|
|
from cymem.cymem cimport Pool
|
|
|
|
from thinc.learner cimport LinearModel
|
|
from thinc.features cimport Extractor, Feature
|
|
|
|
from thinc.typedefs cimport atom_t, weight_t, feat_t
|
|
cimport cython
|
|
|
|
|
|
from .typedefs cimport flags_t
|
|
from .structs cimport TokenC
|
|
from .strings cimport StringStore
|
|
from .tokens cimport Tokens
|
|
from .senses cimport N_SENSES, encode_sense_strs
|
|
from .senses cimport NO_SENSE, N_Tops, J_all, J_pert, A_all, J_ppl, V_body
|
|
from .gold cimport GoldParse
|
|
from .parts_of_speech cimport NOUN, VERB, ADV, ADJ, N_UNIV_TAGS
|
|
|
|
from . cimport parts_of_speech
|
|
|
|
from os import path
|
|
import json
|
|
|
|
|
|
|
|
cdef enum:
|
|
P2W
|
|
P2p
|
|
P2c
|
|
P2c6
|
|
P2c4
|
|
|
|
P1W
|
|
P1p
|
|
P1c
|
|
P1c6
|
|
P1c4
|
|
|
|
N0W
|
|
N0p
|
|
N0c
|
|
N0c6
|
|
N0c4
|
|
|
|
N1W
|
|
N1p
|
|
N1c
|
|
N1c6
|
|
N1c4
|
|
|
|
N2W
|
|
N2p
|
|
N2c
|
|
N2c6
|
|
N2c4
|
|
|
|
Hw
|
|
Hp
|
|
Hc
|
|
Hc6
|
|
Hc4
|
|
|
|
N3W
|
|
P3W
|
|
|
|
P1s
|
|
P2s
|
|
|
|
|
|
CONTEXT_SIZE
|
|
|
|
|
|
unigrams = (
|
|
(Hw,),
|
|
(Hp,),
|
|
(Hw, Hp),
|
|
(Hc, Hp),
|
|
(Hc6, Hp),
|
|
(Hc4, Hp),
|
|
(Hc,),
|
|
|
|
(P2W,),
|
|
(P2p,),
|
|
(P2W, P2p),
|
|
(P2c, P2p),
|
|
(P2c6, P2p),
|
|
(P2c4, P2p),
|
|
(P2c,),
|
|
|
|
(P1W,),
|
|
(P1p,),
|
|
(P1W, P1p),
|
|
(P1c, P1p),
|
|
(P1c6, P1p),
|
|
(P1c4, P1p),
|
|
(P1c,),
|
|
(P1W,),
|
|
(P1p,),
|
|
(P1W, P1p),
|
|
(P1c, P1p),
|
|
(P1c6, P1p),
|
|
(P1c4, P1p),
|
|
(P1c,),
|
|
|
|
(N0p,),
|
|
(N0c, N0p),
|
|
(N0c6, N0p),
|
|
(N0c4, N0p),
|
|
(N0c,),
|
|
(N0p,),
|
|
(N0c, N0p),
|
|
(N0c6, N0p),
|
|
(N0c4, N0p),
|
|
(N0c,),
|
|
|
|
(N1p,),
|
|
(N1W, N1p),
|
|
(N1c, N1p),
|
|
(N1c6, N1p),
|
|
(N1c4, N1p),
|
|
(N1c,),
|
|
(N1W,),
|
|
(N1p,),
|
|
(N1W, N1p),
|
|
(N1c, N1p),
|
|
(N1c6, N1p),
|
|
(N1c4, N1p),
|
|
(N1c,),
|
|
|
|
(N2p,),
|
|
(N2W, N2p),
|
|
(N2c, N2p),
|
|
(N2c6, N2p),
|
|
(N2c4, N2p),
|
|
(N2c,),
|
|
(N2W,),
|
|
(N2p,),
|
|
(N2W, N2p),
|
|
(N2c, N2p),
|
|
(N2c6, N2p),
|
|
(N2c4, N2p),
|
|
(N2c,),
|
|
|
|
(P1s,),
|
|
(P2s,),
|
|
(P1s, P2s,),
|
|
(P1s, N0p),
|
|
(P1s, P2s, N0c),
|
|
|
|
(N3W,),
|
|
(P3W,),
|
|
)
|
|
|
|
|
|
bigrams = (
|
|
(P2p, P1p),
|
|
(P2W, N0p),
|
|
(P2c, P1p),
|
|
(P1c, N0p),
|
|
(P1c6, N0p),
|
|
|
|
(N0p, N1p,),
|
|
(P2W, P1W),
|
|
(P1W, N1W),
|
|
(N1W, N2W),
|
|
)
|
|
|
|
|
|
trigrams = (
|
|
(P1p, N0p, N1p),
|
|
(P2p, P1p,),
|
|
(P2c4, P1c4, N0c4),
|
|
|
|
(P1p, N0p, N1p),
|
|
(P1p, N0p,),
|
|
(P1c4, N0c4, N1c4),
|
|
|
|
(N0p, N1p, N2p),
|
|
(N0p, N1p,),
|
|
(N0c4, N1c4, N2c4),
|
|
(P1W, N0p, N0W),
|
|
)
|
|
|
|
|
|
cdef int fill_token(atom_t* ctxt, const TokenC* token) except -1:
|
|
ctxt[0] = token.lemma
|
|
ctxt[1] = token.tag
|
|
ctxt[2] = token.lex.cluster
|
|
ctxt[3] = token.lex.cluster & 15
|
|
ctxt[4] = token.lex.cluster & 63
|
|
|
|
|
|
cdef int fill_context(atom_t* ctxt, const TokenC* token) except -1:
|
|
# NB: we have padding to keep us safe here
|
|
# See tokens.pyx
|
|
fill_token(&ctxt[P2W], token - 2)
|
|
fill_token(&ctxt[P1W], token - 1)
|
|
|
|
fill_token(&ctxt[N0W], token)
|
|
ctxt[N0W] = 0 # Important! Don't condition on this
|
|
|
|
fill_token(&ctxt[N1W], token + 1)
|
|
fill_token(&ctxt[N2W], token + 2)
|
|
fill_token(&ctxt[Hw], token + token.head)
|
|
ctxt[P1s] = (token - 1).sense
|
|
ctxt[P2s] = (token - 2).sense
|
|
ctxt[N3W] = (token + 3).lemma
|
|
ctxt[P3W] = (token - 3).lemma
|
|
|
|
|
|
cdef class FeatureVector:
|
|
cdef Pool mem
|
|
cdef Feature* c
|
|
cdef list extractors
|
|
cdef int length
|
|
cdef int _max_length
|
|
|
|
def __init__(self, length=100):
|
|
self.mem = Pool()
|
|
self.c = <Feature*>self.mem.alloc(length, sizeof(Feature))
|
|
self.length = 0
|
|
self._max_length = length
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
cpdef int add(self, feat_t key, weight_t value) except -1:
|
|
if self.length == self._max_length:
|
|
self._max_length *= 2
|
|
self.c = <Feature*>self.mem.realloc(self.c, self._max_length * sizeof(Feature))
|
|
|
|
self.c[self.length] = Feature(i=0, key=key, value=value)
|
|
self.length += 1
|
|
|
|
cdef int extend(self, const Feature* new_feats, int n_feats) except -1:
|
|
new_length = self.length + n_feats
|
|
if new_length >= self._max_length:
|
|
self._max_length = 2 * new_length
|
|
self.c = <Feature*>self.mem.realloc(self.c, new_length * sizeof(Feature))
|
|
memcpy(&self.c[self.length], new_feats, n_feats * sizeof(Feature))
|
|
self.length += n_feats
|
|
|
|
def clear(self):
|
|
self.length = 0
|
|
|
|
|
|
cdef class SenseTagger:
|
|
cdef readonly StringStore strings
|
|
cdef readonly LinearModel model
|
|
cdef readonly Extractor extractor
|
|
cdef readonly model_dir
|
|
cdef readonly flags_t[<int>N_UNIV_TAGS] pos_senses
|
|
cdef dict tagdict
|
|
|
|
def __init__(self, StringStore strings, model_dir):
|
|
self.model_dir = model_dir
|
|
if path.exists(path.join(model_dir, 'wordnet', 'supersenses.json')):
|
|
self.tagdict = json.load(open(path.join(model_dir, 'wordnet', 'supersenses.json')))
|
|
else:
|
|
self.tagdict = {}
|
|
|
|
if model_dir is not None and path.isdir(model_dir):
|
|
model_dir = path.join(model_dir, 'wsd')
|
|
|
|
templates = unigrams + bigrams + trigrams
|
|
self.extractor = Extractor(templates)
|
|
self.model = LinearModel(N_SENSES, self.extractor.n_templ)
|
|
|
|
self.strings = strings
|
|
cdef flags_t all_senses = 0
|
|
cdef flags_t sense = 0
|
|
cdef flags_t one = 1
|
|
for sense in range(1, N_SENSES):
|
|
all_senses |= (one << sense)
|
|
|
|
self.pos_senses[<int>parts_of_speech.NO_TAG] = all_senses
|
|
self.pos_senses[<int>parts_of_speech.ADJ] = all_senses
|
|
self.pos_senses[<int>parts_of_speech.ADV] = all_senses
|
|
self.pos_senses[<int>parts_of_speech.ADP] = all_senses
|
|
self.pos_senses[<int>parts_of_speech.CONJ] = 0
|
|
self.pos_senses[<int>parts_of_speech.DET] = 0
|
|
self.pos_senses[<int>parts_of_speech.NUM] = 0
|
|
self.pos_senses[<int>parts_of_speech.PRON] = 0
|
|
self.pos_senses[<int>parts_of_speech.PRT] = all_senses
|
|
self.pos_senses[<int>parts_of_speech.X] = all_senses
|
|
self.pos_senses[<int>parts_of_speech.PUNCT] = 0
|
|
self.pos_senses[<int>parts_of_speech.EOL] = 0
|
|
|
|
for sense in range(N_Tops, V_body):
|
|
self.pos_senses[<int>parts_of_speech.NOUN] |= one << sense
|
|
|
|
self.pos_senses[<int>parts_of_speech.VERB] = 0
|
|
for sense in range(V_body, J_ppl):
|
|
self.pos_senses[<int>parts_of_speech.VERB] |= one << sense
|
|
|
|
def __call__(self, Tokens tokens):
|
|
cdef atom_t[CONTEXT_SIZE] local_context
|
|
cdef int i, guess, n_feats
|
|
cdef flags_t valid_senses = 0
|
|
cdef TokenC* token
|
|
cdef flags_t one = 1
|
|
cdef int n_doc_feats
|
|
cdef Pool mem = Pool()
|
|
feats = self.get_doc_feats(mem, tokens, &n_doc_feats)
|
|
for i in range(tokens.length):
|
|
token = &tokens.data[i]
|
|
valid_senses = token.lex.senses & self.pos_senses[<int>token.pos]
|
|
if valid_senses >= 2:
|
|
fill_context(local_context, token)
|
|
n_local_feats = self.extractor.set_feats(&feats[n_doc_feats],
|
|
local_context)
|
|
scores = self.model.get_scores(feats, n_local_feats)
|
|
self.weight_scores_by_tagdict(<weight_t*><void*>scores, token, 0.0)
|
|
tokens.data[i].sense = self.best_in_set(scores, valid_senses)
|
|
else:
|
|
token.sense = NO_SENSE
|
|
|
|
def train(self, Tokens tokens):
|
|
cdef int i, j
|
|
cdef TokenC* token
|
|
cdef atom_t[CONTEXT_SIZE] context
|
|
cdef int n_doc_feats, n_local_feats
|
|
cdef feat_t f_key
|
|
cdef flags_t best_senses = 0
|
|
cdef int f_i
|
|
cdef int cost = 0
|
|
|
|
cdef Pool mem = Pool()
|
|
feats = self.get_doc_feats(mem, tokens, &n_doc_feats)
|
|
for i in range(tokens.length):
|
|
token = &tokens.data[i]
|
|
pos_senses = self.pos_senses[<int>token.pos]
|
|
lex_senses = token.lex.senses & pos_senses
|
|
if lex_senses >= 2:
|
|
fill_context(context, token)
|
|
|
|
n_local_feats = self.extractor.set_feats(&feats[n_doc_feats], context)
|
|
scores = self.model.get_scores(feats, n_doc_feats + n_local_feats)
|
|
guess = self.best_in_set(scores, pos_senses)
|
|
best = self.best_in_set(scores, lex_senses)
|
|
update = self._make_update(feats, n_doc_feats + n_local_feats,
|
|
guess, best)
|
|
self.model.update(update)
|
|
token.sense = best
|
|
cost += guess != best
|
|
else:
|
|
token.sense = 1
|
|
return cost
|
|
|
|
cdef dict _make_update(self, const Feature* feats, int n_feats, int guess, int best):
|
|
guess_counts = {}
|
|
gold_counts = {}
|
|
if guess != best:
|
|
for j in range(n_feats):
|
|
f_key = feats[j].key
|
|
f_i = feats[j].i
|
|
feat = (f_i, f_key)
|
|
gold_counts[feat] = gold_counts.get(feat, 0) + 1.0
|
|
guess_counts[feat] = guess_counts.get(feat, 0) - 1.0
|
|
return {guess: guess_counts, best: gold_counts}
|
|
|
|
cdef Feature* get_doc_feats(self, Pool mem, Tokens tokens, int* n_feats) except NULL:
|
|
# Get features for the document
|
|
# Start with activation strengths for each supersense
|
|
n_feats[0] = N_SENSES
|
|
feats = <Feature*>mem.alloc(n_feats[0] + self.extractor.n_templ + 1,
|
|
sizeof(Feature))
|
|
cdef int i, ssense
|
|
for ssense in range(N_SENSES):
|
|
feats[ssense] = Feature(i=0, key=ssense, value=0)
|
|
cdef flags_t pos_senses
|
|
cdef flags_t one = 1
|
|
for i in range(tokens.length):
|
|
sense_probs = self.tagdict.get(tokens.data[i].lemma, {})
|
|
pos_senses = self.pos_senses[<int>tokens.data[i].pos]
|
|
for ssense_str, prob in sense_probs.items():
|
|
ssense = int(ssense_str + 1)
|
|
if pos_senses & (one << <flags_t>ssense):
|
|
feats[ssense].value += prob
|
|
return feats
|
|
|
|
cdef int best_in_set(self, const weight_t* scores, flags_t senses) except -1:
|
|
cdef weight_t max_ = 0
|
|
cdef int argmax = -1
|
|
cdef flags_t i
|
|
cdef flags_t one = 1
|
|
for i in range(N_SENSES):
|
|
if (senses & (one << i)) and (argmax == -1 or scores[i] > max_):
|
|
max_ = scores[i]
|
|
argmax = i
|
|
assert argmax >= 0
|
|
return argmax
|
|
|
|
cdef int weight_scores_by_tagdict(self, weight_t* scores, const TokenC* token,
|
|
weight_t a) except -1:
|
|
lemma = self.strings[token.lemma]
|
|
|
|
# First softmax the scores
|
|
softmax(scores, N_SENSES)
|
|
|
|
probs = self.tagdict.get(lemma, {})
|
|
for i in range(1, N_SENSES):
|
|
prob = probs.get(unicode(i-1), 0)
|
|
scores[i] = (a * prob) + ((1 - a) * scores[i])
|
|
|
|
def end_training(self):
|
|
self.model.end_training()
|
|
self.model.dump(path.join(self.model_dir, 'model'), freq_thresh=0)
|
|
|
|
|
|
@cython.cdivision(True)
|
|
cdef void softmax(weight_t* scores, int n_classes) nogil:
|
|
cdef int i
|
|
cdef double total = 0
|
|
for i in range(N_SENSES):
|
|
total += exp(scores[i])
|
|
for i in range(N_SENSES):
|
|
scores[i] = <weight_t>(exp(scores[i]) / total)
|
|
|
|
|
|
|
|
cdef list _set_bits(flags_t flags):
|
|
bits = []
|
|
cdef flags_t bit
|
|
cdef flags_t one = 1
|
|
for bit in range(N_SENSES):
|
|
if flags & (one << bit):
|
|
bits.append(bit)
|
|
return bits
|