spaCy/examples/training/train_entity_linker.py
Sofie Van Landeghem 0d94737857
Feature toggle_pipes (#5378)
* make disable_pipes deprecated in favour of the new toggle_pipes

* rewrite disable_pipes statements

* update documentation

* remove bin/wiki_entity_linking folder

* one more fix

* remove deprecated link to documentation

* few more doc fixes

* add note about name change to the docs

* restore original disable_pipes

* small fixes

* fix typo

* fix error number to W096

* rename to select_pipes

* also make changes to the documentation

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-05-18 22:27:10 +02:00

176 lines
7.0 KiB
Python

#!/usr/bin/env python
# coding: utf8
"""Example of training spaCy's entity linker, starting off with an
existing model and a pre-defined knowledge base.
For more details, see the documentation:
* Training: https://spacy.io/usage/training
* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
Compatible with: spaCy v2.2.3
Last tested with: v2.2.3
"""
from __future__ import unicode_literals, print_function
import plac
import random
from pathlib import Path
import srsly
from spacy.vocab import Vocab
import spacy
from spacy.kb import KnowledgeBase
from spacy.pipeline import EntityRuler
from spacy.tokens import Span
from spacy.util import minibatch, compounding
def sample_train_data():
train_data = []
# Q2146908 (Russ Cochran): American golfer
# Q7381115 (Russ Cochran): publisher
text_1 = "Russ Cochran his reprints include EC Comics."
dict_1 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}
train_data.append((text_1, {"links": dict_1}))
text_2 = "Russ Cochran has been publishing comic art."
dict_2 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}
train_data.append((text_2, {"links": dict_2}))
text_3 = "Russ Cochran captured his first major title with his son as caddie."
dict_3 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}
train_data.append((text_3, {"links": dict_3}))
text_4 = "Russ Cochran was a member of University of Kentucky's golf team."
dict_4 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}
train_data.append((text_4, {"links": dict_4}))
return train_data
# training data
TRAIN_DATA = sample_train_data()
@plac.annotations(
kb_path=("Path to the knowledge base", "positional", None, Path),
vocab_path=("Path to the vocab for the kb", "positional", None, Path),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int),
)
def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
"""Create a blank model with the specified vocab, set up the pipeline and train the entity linker.
The `vocab` should be the one used during creation of the KB."""
vocab = Vocab().from_disk(vocab_path)
# create blank Language class with correct vocab
nlp = spacy.blank("en", vocab=vocab)
nlp.vocab.vectors.name = "nel_vectors"
print("Created blank 'en' model with vocab from '%s'" % vocab_path)
# Add a sentencizer component. Alternatively, add a dependency parser for higher accuracy.
nlp.add_pipe(nlp.create_pipe('sentencizer'))
# Add a custom component to recognize "Russ Cochran" as an entity for the example training data.
# Note that in a realistic application, an actual NER algorithm should be used instead.
ruler = EntityRuler(nlp)
patterns = [{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler)
# Create the Entity Linker component and add it to the pipeline.
if "entity_linker" not in nlp.pipe_names:
# use only the predicted EL score and not the prior probability (for demo purposes)
cfg = {"incl_prior": False}
entity_linker = nlp.create_pipe("entity_linker", cfg)
kb = KnowledgeBase(vocab=nlp.vocab)
kb.load_bulk(kb_path)
print("Loaded Knowledge Base from '%s'" % kb_path)
entity_linker.set_kb(kb)
nlp.add_pipe(entity_linker, last=True)
# Convert the texts to docs to make sure we have doc.ents set for the training examples.
# Also ensure that the annotated examples correspond to known identifiers in the knowledge base.
kb_ids = nlp.get_pipe("entity_linker").kb.get_entity_strings()
TRAIN_DOCS = []
for text, annotation in TRAIN_DATA:
with nlp.select_pipes(disable="entity_linker"):
doc = nlp(text)
annotation_clean = annotation
for offset, kb_id_dict in annotation["links"].items():
new_dict = {}
for kb_id, value in kb_id_dict.items():
if kb_id in kb_ids:
new_dict[kb_id] = value
else:
print(
"Removed", kb_id, "from training because it is not in the KB."
)
annotation_clean["links"][offset] = new_dict
TRAIN_DOCS.append((doc, annotation_clean))
with nlp.select_pipes(enable="entity_linker"): # only train entity linker
# reset and initialize the weights randomly
optimizer = nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DOCS)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DOCS, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(
batch,
drop=0.2, # dropout - make it harder to memorise data
losses=losses,
sgd=optimizer,
)
print(itn, "Losses", losses)
# test the trained model
_apply_model(nlp)
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print()
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
_apply_model(nlp2)
def _apply_model(nlp):
for text, annotation in TRAIN_DATA:
# apply the entity linker which will now make predictions for the 'Russ Cochran' entities
doc = nlp(text)
print()
print("Entities", [(ent.text, ent.label_, ent.kb_id_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_kb_id_) for t in doc])
if __name__ == "__main__":
plac.call(main)
# Expected output (can be shuffled):
# Entities[('Russ Cochran', 'PERSON', 'Q7381115')]
# Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ("his", '', ''), ('reprints', '', ''), ('include', '', ''), ('The', '', ''), ('Complete', '', ''), ('EC', '', ''), ('Library', '', ''), ('.', '', '')]
# Entities[('Russ Cochran', 'PERSON', 'Q7381115')]
# Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ('has', '', ''), ('been', '', ''), ('publishing', '', ''), ('comic', '', ''), ('art', '', ''), ('.', '', '')]
# Entities[('Russ Cochran', 'PERSON', 'Q2146908')]
# Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('captured', '', ''), ('his', '', ''), ('first', '', ''), ('major', '', ''), ('title', '', ''), ('with', '', ''), ('his', '', ''), ('son', '', ''), ('as', '', ''), ('caddie', '', ''), ('.', '', '')]
# Entities[('Russ Cochran', 'PERSON', 'Q2146908')]
# Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('was', '', ''), ('a', '', ''), ('member', '', ''), ('of', '', ''), ('University', '', ''), ('of', '', ''), ('Kentucky', '', ''), ("'s", '', ''), ('golf', '', ''), ('team', '', ''), ('.', '', '')]