mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 15:37:29 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			209 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			209 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import plac
 | |
| import collections
 | |
| import random
 | |
| 
 | |
| import pathlib
 | |
| import cytoolz
 | |
| import numpy
 | |
| from keras.models import Sequential, model_from_json
 | |
| from keras.layers import LSTM, Dense, Embedding, Dropout, Bidirectional
 | |
| from keras.layers import TimeDistributed
 | |
| from keras.optimizers import Adam
 | |
| import cPickle as pickle
 | |
| 
 | |
| import spacy
 | |
| 
 | |
| 
 | |
| class SentimentAnalyser(object):
 | |
|     @classmethod
 | |
|     def load(cls, path, nlp, max_length=100):
 | |
|         with (path / 'config.json').open() as file_:
 | |
|             model = model_from_json(file_.read())
 | |
|         with (path / 'model').open('rb') as file_:
 | |
|             lstm_weights = pickle.load(file_)
 | |
|         embeddings = get_embeddings(nlp.vocab)
 | |
|         model.set_weights([embeddings] + lstm_weights)
 | |
|         return cls(model, max_length=max_length)
 | |
| 
 | |
|     def __init__(self, model, max_length=100):
 | |
|         self._model = model
 | |
|         self.max_length = max_length
 | |
| 
 | |
|     def __call__(self, doc):
 | |
|         X = get_features([doc], self.max_length)
 | |
|         y = self._model.predict(X)
 | |
|         self.set_sentiment(doc, y)
 | |
| 
 | |
|     def pipe(self, docs, batch_size=1000, n_threads=2):
 | |
|         for minibatch in cytoolz.partition_all(batch_size, docs):
 | |
|             minibatch = list(minibatch)
 | |
|             sentences = []
 | |
|             for doc in minibatch:
 | |
|                 sentences.extend(doc.sents)
 | |
|             Xs = get_features(sentences, self.max_length)
 | |
|             ys = self._model.predict(Xs)
 | |
|             for sent, label in zip(sentences, ys):
 | |
|                 sent.doc.sentiment += label - 0.5
 | |
|             for doc in minibatch:
 | |
|                 yield doc
 | |
| 
 | |
|     def set_sentiment(self, doc, y):
 | |
|         doc.sentiment = float(y[0])
 | |
|         # Sentiment has a native slot for a single float.
 | |
|         # For arbitrary data storage, there's:
 | |
|         # doc.user_data['my_data'] = y
 | |
| 
 | |
| 
 | |
| def get_labelled_sentences(docs, doc_labels):
 | |
|     labels = []
 | |
|     sentences = []
 | |
|     for doc, y in zip(docs, doc_labels):
 | |
|         for sent in doc.sents:
 | |
|             sentences.append(sent)
 | |
|             labels.append(y)
 | |
|     return sentences, numpy.asarray(labels, dtype='int32')
 | |
| 
 | |
| 
 | |
| def get_features(docs, max_length):
 | |
|     docs = list(docs)
 | |
|     Xs = numpy.zeros((len(docs), max_length), dtype='int32')
 | |
|     for i, doc in enumerate(docs):
 | |
|         j = 0
 | |
|         for token in doc:
 | |
|             if token.has_vector and not token.is_punct and not token.is_space:
 | |
|                 Xs[i, j] = token.rank + 1
 | |
|                 j += 1
 | |
|                 if j >= max_length:
 | |
|                     break
 | |
|     return Xs
 | |
| 
 | |
| 
 | |
| def train(train_texts, train_labels, dev_texts, dev_labels,
 | |
|         lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
 | |
|         by_sentence=True):
 | |
|     print("Loading spaCy")
 | |
|     nlp = spacy.load('en', entity=False)
 | |
|     embeddings = get_embeddings(nlp.vocab)
 | |
|     model = compile_lstm(embeddings, lstm_shape, lstm_settings)
 | |
|     print("Parsing texts...")
 | |
|     train_docs = list(nlp.pipe(train_texts, batch_size=5000, n_threads=3))
 | |
|     dev_docs = list(nlp.pipe(dev_texts, batch_size=5000, n_threads=3))
 | |
|     if by_sentence:
 | |
|         train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
 | |
|         dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
 | |
|         
 | |
|     train_X = get_features(train_docs, lstm_shape['max_length'])
 | |
|     dev_X = get_features(dev_docs, lstm_shape['max_length'])
 | |
|     model.fit(train_X, train_labels, validation_data=(dev_X, dev_labels),
 | |
|               nb_epoch=nb_epoch, batch_size=batch_size)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def compile_lstm(embeddings, shape, settings):
 | |
|     model = Sequential()
 | |
|     model.add(
 | |
|         Embedding(
 | |
|             embeddings.shape[0],
 | |
|             embeddings.shape[1],
 | |
|             input_length=shape['max_length'],
 | |
|             trainable=False,
 | |
|             weights=[embeddings],
 | |
|             mask_zero=True
 | |
|         )
 | |
|     )
 | |
|     model.add(TimeDistributed(Dense(shape['nr_hidden'], bias=False)))
 | |
|     model.add(Bidirectional(LSTM(shape['nr_hidden'], dropout_U=settings['dropout'],
 | |
|                                  dropout_W=settings['dropout'])))
 | |
|     model.add(Dense(shape['nr_class'], activation='sigmoid'))
 | |
|     model.compile(optimizer=Adam(lr=settings['lr']), loss='binary_crossentropy',
 | |
| 		  metrics=['accuracy'])
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def get_embeddings(vocab):
 | |
|     max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
 | |
|     vectors = numpy.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
 | |
|     for lex in vocab:
 | |
|         if lex.has_vector:
 | |
|             vectors[lex.rank + 1] = lex.vector
 | |
|     return vectors
 | |
| 
 | |
| 
 | |
| def evaluate(model_dir, texts, labels, max_length=100):
 | |
|     def create_pipeline(nlp):
 | |
|         '''
 | |
|         This could be a lambda, but named functions are easier to read in Python.
 | |
|         '''
 | |
|         return [nlp.tagger, nlp.parser, SentimentAnalyser.load(model_dir, nlp,
 | |
|                                                                max_length=max_length)]
 | |
|     
 | |
|     nlp = spacy.load('en')
 | |
|     nlp.pipeline = create_pipeline(nlp)
 | |
| 
 | |
|     correct = 0
 | |
|     i = 0 
 | |
|     for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
 | |
|         correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
 | |
|         i += 1
 | |
|     return float(correct) / i
 | |
| 
 | |
| 
 | |
| def read_data(data_dir, limit=0):
 | |
|     examples = []
 | |
|     for subdir, label in (('pos', 1), ('neg', 0)):
 | |
|         for filename in (data_dir / subdir).iterdir():
 | |
|             with filename.open() as file_:
 | |
|                 text = file_.read()
 | |
|             examples.append((text, label))
 | |
|     random.shuffle(examples)
 | |
|     if limit >= 1:
 | |
|         examples = examples[:limit]
 | |
|     return zip(*examples) # Unzips into two lists
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     train_dir=("Location of training file or directory"),
 | |
|     dev_dir=("Location of development file or directory"),
 | |
|     model_dir=("Location of output model directory",),
 | |
|     is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
 | |
|     nr_hidden=("Number of hidden units", "option", "H", int),
 | |
|     max_length=("Maximum sentence length", "option", "L", int),
 | |
|     dropout=("Dropout", "option", "d", float),
 | |
|     learn_rate=("Learn rate", "option", "e", float),
 | |
|     nb_epoch=("Number of training epochs", "option", "i", int),
 | |
|     batch_size=("Size of minibatches for training LSTM", "option", "b", int),
 | |
|     nr_examples=("Limit to N examples", "option", "n", int)
 | |
| )
 | |
| def main(model_dir, train_dir, dev_dir,
 | |
|          is_runtime=False,
 | |
|          nr_hidden=64, max_length=100, # Shape
 | |
|          dropout=0.5, learn_rate=0.001, # General NN config
 | |
|          nb_epoch=5, batch_size=100, nr_examples=-1):  # Training params
 | |
|     model_dir = pathlib.Path(model_dir)
 | |
|     train_dir = pathlib.Path(train_dir)
 | |
|     dev_dir = pathlib.Path(dev_dir)
 | |
|     if is_runtime:
 | |
|         dev_texts, dev_labels = read_data(dev_dir)
 | |
|         acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
 | |
|         print(acc)
 | |
|     else:
 | |
|         print("Read data")
 | |
|         train_texts, train_labels = read_data(train_dir, limit=nr_examples)
 | |
|         dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
 | |
|         train_labels = numpy.asarray(train_labels, dtype='int32')
 | |
|         dev_labels = numpy.asarray(dev_labels, dtype='int32')
 | |
|         lstm = train(train_texts, train_labels, dev_texts, dev_labels,
 | |
|                      {'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 1},
 | |
|                      {'dropout': dropout, 'lr': learn_rate},
 | |
|                      {},
 | |
|                      nb_epoch=nb_epoch, batch_size=batch_size)
 | |
|         weights = lstm.get_weights()
 | |
|         with (model_dir / 'model').open('wb') as file_:
 | |
|             pickle.dump(weights[1:], file_)
 | |
|         with (model_dir / 'config.json').open('wb') as file_:
 | |
|             file_.write(lstm.to_json())
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     plac.call(main)
 |