mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			301 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			301 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
title: EntityLinker
 | 
						|
teaser:
 | 
						|
  Functionality to disambiguate a named entity in text to a unique knowledge
 | 
						|
  base identifier.
 | 
						|
tag: class
 | 
						|
source: spacy/pipeline/pipes.pyx
 | 
						|
new: 2.2
 | 
						|
---
 | 
						|
 | 
						|
This class is a subclass of `Pipe` and follows the same API. The pipeline
 | 
						|
component is available in the [processing pipeline](/usage/processing-pipelines)
 | 
						|
via the ID `"entity_linker"`.
 | 
						|
 | 
						|
## EntityLinker.Model {#model tag="classmethod"}
 | 
						|
 | 
						|
Initialize a model for the pipe. The model should implement the
 | 
						|
`thinc.neural.Model` API, and should contain a field `tok2vec` that contains the
 | 
						|
context encoder. Wrappers are under development for most major machine learning
 | 
						|
libraries.
 | 
						|
 | 
						|
| Name        | Type   | Description                           |
 | 
						|
| ----------- | ------ | ------------------------------------- |
 | 
						|
| `**kwargs`  | -      | Parameters for initializing the model |
 | 
						|
| **RETURNS** | object | The initialized model.                |
 | 
						|
 | 
						|
## EntityLinker.\_\_init\_\_ {#init tag="method"}
 | 
						|
 | 
						|
Create a new pipeline instance. In your application, you would normally use a
 | 
						|
shortcut for this and instantiate the component using its string name and
 | 
						|
[`nlp.create_pipe`](/api/language#create_pipe).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> # Construction via create_pipe
 | 
						|
> entity_linker = nlp.create_pipe("entity_linker")
 | 
						|
>
 | 
						|
> # Construction from class
 | 
						|
> from spacy.pipeline import EntityLinker
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> entity_linker.from_disk("/path/to/model")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Type                          | Description                                                                                                                                           |
 | 
						|
| -------------- | ----------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `vocab`        | `Vocab`                       | The shared vocabulary.                                                                                                                                |
 | 
						|
| `model`        | `thinc.neural.Model` / `True` | The model powering the pipeline component. If no model is supplied, the model is created when you call `begin_training`, `from_disk` or `from_bytes`. |
 | 
						|
| `hidden_width` | int                           | Width of the hidden layer of the entity linking model, defaults to `128`.                                                                             |
 | 
						|
| `incl_prior`   | bool                          | Whether or not to include prior probabilities in the model. Defaults to `True`.                                                                       |
 | 
						|
| `incl_context` | bool                          | Whether or not to include the local context in the model (if not: only prior probabilities are used). Defaults to `True`.                             |
 | 
						|
| **RETURNS**    | `EntityLinker`                | The newly constructed object.                                                                                                                         |
 | 
						|
 | 
						|
## EntityLinker.\_\_call\_\_ {#call tag="method"}
 | 
						|
 | 
						|
Apply the pipe to one document. The document is modified in place, and returned.
 | 
						|
This usually happens under the hood when the `nlp` object is called on a text
 | 
						|
and all pipeline components are applied to the `Doc` in order. Both
 | 
						|
[`__call__`](/api/entitylinker#call) and [`pipe`](/api/entitylinker#pipe)
 | 
						|
delegate to the [`predict`](/api/entitylinker#predict) and
 | 
						|
[`set_annotations`](/api/entitylinker#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> doc = nlp("This is a sentence.")
 | 
						|
> # This usually happens under the hood
 | 
						|
> processed = entity_linker(doc)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type  | Description              |
 | 
						|
| ----------- | ----- | ------------------------ |
 | 
						|
| `doc`       | `Doc` | The document to process. |
 | 
						|
| **RETURNS** | `Doc` | The processed document.  |
 | 
						|
 | 
						|
## EntityLinker.pipe {#pipe tag="method"}
 | 
						|
 | 
						|
Apply the pipe to a stream of documents. This usually happens under the hood
 | 
						|
when the `nlp` object is called on a text and all pipeline components are
 | 
						|
applied to the `Doc` in order. Both [`__call__`](/api/entitylinker#call) and
 | 
						|
[`pipe`](/api/entitylinker#pipe) delegate to the
 | 
						|
[`predict`](/api/entitylinker#predict) and
 | 
						|
[`set_annotations`](/api/entitylinker#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> for doc in entity_linker.pipe(docs, batch_size=50):
 | 
						|
>     pass
 | 
						|
> ```
 | 
						|
 | 
						|
| Name         | Type     | Description                                            |
 | 
						|
| ------------ | -------- | ------------------------------------------------------ |
 | 
						|
| `stream`     | iterable | A stream of documents.                                 |
 | 
						|
| `batch_size` | int      | The number of texts to buffer. Defaults to `128`.      |
 | 
						|
| **YIELDS**   | `Doc`    | Processed documents in the order of the original text. |
 | 
						|
 | 
						|
## EntityLinker.predict {#predict tag="method"}
 | 
						|
 | 
						|
Apply the pipeline's model to a batch of docs, without modifying them.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> kb_ids, tensors = entity_linker.predict([doc1, doc2])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type     | Description                                                                                                                                                                                        |
 | 
						|
| ----------- | -------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `docs`      | iterable | The documents to predict.                                                                                                                                                                          |
 | 
						|
| **RETURNS** | tuple    | A `(kb_ids, tensors)` tuple where `kb_ids` are the model's predicted KB identifiers for the entities in the `docs`, and `tensors` are the token representations used to predict these identifiers. |
 | 
						|
 | 
						|
## EntityLinker.set_annotations {#set_annotations tag="method"}
 | 
						|
 | 
						|
Modify a batch of documents, using pre-computed entity IDs for a list of named
 | 
						|
entities.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> kb_ids, tensors = entity_linker.predict([doc1, doc2])
 | 
						|
> entity_linker.set_annotations([doc1, doc2], kb_ids, tensors)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name      | Type     | Description                                                                                       |
 | 
						|
| --------- | -------- | ------------------------------------------------------------------------------------------------- |
 | 
						|
| `docs`    | iterable | The documents to modify.                                                                          |
 | 
						|
| `kb_ids`  | iterable | The knowledge base identifiers for the entities in the docs, predicted by `EntityLinker.predict`. |
 | 
						|
| `tensors` | iterable | The token representations used to predict the identifiers.                                        |
 | 
						|
 | 
						|
## EntityLinker.update {#update tag="method"}
 | 
						|
 | 
						|
Learn from a batch of documents and gold-standard information, updating both the
 | 
						|
pipe's entity linking model and context encoder. Delegates to
 | 
						|
[`predict`](/api/entitylinker#predict) and
 | 
						|
[`get_loss`](/api/entitylinker#get_loss).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> losses = {}
 | 
						|
> optimizer = nlp.begin_training()
 | 
						|
> entity_linker.update([doc1, doc2], [gold1, gold2], losses=losses, sgd=optimizer)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Type     | Description                                                                                             |
 | 
						|
| -------- | -------- | ------------------------------------------------------------------------------------------------------- |
 | 
						|
| `docs`   | iterable | A batch of documents to learn from.                                                                     |
 | 
						|
| `golds`  | iterable | The gold-standard data. Must have the same length as `docs`.                                            |
 | 
						|
| `drop`   | float    | The dropout rate, used both for the EL model and the context encoder.                                   |
 | 
						|
| `sgd`    | callable | The optimizer for the EL model. Should take two arguments `weights` and `gradient`, and an optional ID. |
 | 
						|
| `losses` | dict     | Optional record of the loss during training. The value keyed by the model's name is updated.            |
 | 
						|
 | 
						|
## EntityLinker.get_loss {#get_loss tag="method"}
 | 
						|
 | 
						|
Find the loss and gradient of loss for the entities in a batch of documents and
 | 
						|
their predicted scores.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> kb_ids, tensors = entity_linker.predict(docs)
 | 
						|
> loss, d_loss = entity_linker.get_loss(docs, [gold1, gold2], kb_ids, tensors)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type     | Description                                                  |
 | 
						|
| ----------- | -------- | ------------------------------------------------------------ |
 | 
						|
| `docs`      | iterable | The batch of documents.                                      |
 | 
						|
| `golds`     | iterable | The gold-standard data. Must have the same length as `docs`. |
 | 
						|
| `kb_ids`    | iterable | KB identifiers representing the model's predictions.         |
 | 
						|
| `tensors`   | iterable | The token representations used to predict the identifiers    |
 | 
						|
| **RETURNS** | tuple    | The loss and the gradient, i.e. `(loss, gradient)`.          |
 | 
						|
 | 
						|
## EntityLinker.set_kb {#set_kb tag="method"}
 | 
						|
 | 
						|
Define the knowledge base (KB) used for disambiguating named entities to KB
 | 
						|
identifiers.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> entity_linker.set_kb(kb)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name | Type            | Description                     |
 | 
						|
| ---- | --------------- | ------------------------------- |
 | 
						|
| `kb` | `KnowledgeBase` | The [`KnowledgeBase`](/api/kb). |
 | 
						|
 | 
						|
## EntityLinker.begin_training {#begin_training tag="method"}
 | 
						|
 | 
						|
Initialize the pipe for training, using data examples if available. If no model
 | 
						|
has been initialized yet, the model is added. Before calling this method, a
 | 
						|
knowledge base should have been defined with
 | 
						|
[`set_kb`](/api/entitylinker#set_kb).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> entity_linker.set_kb(kb)
 | 
						|
> nlp.add_pipe(entity_linker, last=True)
 | 
						|
> optimizer = entity_linker.begin_training(pipeline=nlp.pipeline)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name          | Type     | Description                                                                                                                                                                         |
 | 
						|
| ------------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `gold_tuples` | iterable | Optional gold-standard annotations from which to construct [`GoldParse`](/api/goldparse) objects.                                                                                   |
 | 
						|
| `pipeline`    | list     | Optional list of pipeline components that this component is part of.                                                                                                                |
 | 
						|
| `sgd`         | callable | An optional optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. Will be created via [`EntityLinker`](/api/entitylinker#create_optimizer) if not set. |
 | 
						|
| **RETURNS**   | callable | An optimizer.                                                                                                                                                                       |
 | 
						|
 | 
						|
## EntityLinker.create_optimizer {#create_optimizer tag="method"}
 | 
						|
 | 
						|
Create an optimizer for the pipeline component.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> optimizer = entity_linker.create_optimizer()
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type     | Description    |
 | 
						|
| ----------- | -------- | -------------- |
 | 
						|
| **RETURNS** | callable | The optimizer. |
 | 
						|
 | 
						|
## EntityLinker.use_params {#use_params tag="method, contextmanager"}
 | 
						|
 | 
						|
Modify the pipe's EL model, to use the given parameter values.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> with entity_linker.use_params(optimizer.averages):
 | 
						|
>     entity_linker.to_disk("/best_model")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Type | Description                                                                                                |
 | 
						|
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
 | 
						|
| `params` | dict | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
 | 
						|
 | 
						|
## EntityLinker.to_disk {#to_disk tag="method"}
 | 
						|
 | 
						|
Serialize the pipe to disk.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> entity_linker.to_disk("/path/to/entity_linker")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name      | Type             | Description                                                                                                           |
 | 
						|
| --------- | ---------------- | --------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `path`    | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | 
						|
| `exclude` | list             | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | 
						|
 | 
						|
## EntityLinker.from_disk {#from_disk tag="method"}
 | 
						|
 | 
						|
Load the pipe from disk. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = EntityLinker(nlp.vocab)
 | 
						|
> entity_linker.from_disk("/path/to/entity_linker")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type             | Description                                                                |
 | 
						|
| ----------- | ---------------- | -------------------------------------------------------------------------- |
 | 
						|
| `path`      | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | 
						|
| `exclude`   | list             | String names of [serialization fields](#serialization-fields) to exclude.  |
 | 
						|
| **RETURNS** | `EntityLinker`   | The modified `EntityLinker` object.                                        |
 | 
						|
 | 
						|
## Serialization fields {#serialization-fields}
 | 
						|
 | 
						|
During serialization, spaCy will export several data fields used to restore
 | 
						|
different aspects of the object. If needed, you can exclude them from
 | 
						|
serialization by passing in the string names via the `exclude` argument.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> data = entity_linker.to_disk("/path", exclude=["vocab"])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name    | Description                                                    |
 | 
						|
| ------- | -------------------------------------------------------------- |
 | 
						|
| `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | 
						|
| `cfg`   | The config file. You usually don't want to exclude this.       |
 | 
						|
| `model` | The binary model data. You usually don't want to exclude this. |
 | 
						|
| `kb`    | The knowledge base. You usually don't want to exclude this.    |
 |