spaCy/website/docs/api/sentencizer.md
2020-07-27 00:29:45 +02:00

132 lines
5.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Sentencizer
tag: class
source: spacy/pipeline/pipes.pyx
---
A simple pipeline component, to allow custom sentence boundary detection logic
that doesn't require the dependency parse. By default, sentence segmentation is
performed by the [`DependencyParser`](/api/dependencyparser), so the
`Sentencizer` lets you implement a simpler, rule-based strategy that doesn't
require a statistical model to be loaded. The component is also available via
the string name `"sentencizer"`.
## Sentencizer.\_\_init\_\_ {#init tag="method"}
Initialize the sentencizer.
> #### Example
>
> ```python
> # Construction via add_pipe
> sentencizer = nlp.add_pipe("sentencizer")
> ```
| Name | Type | Description |
| ------------- | ------------- | ----------------------------------------------------------------------------------------------- |
| `punct_chars` | list | Optional custom list of punctuation characters that mark sentence ends. See below for defaults. |
| **RETURNS** | `Sentencizer` | The newly constructed object. |
```python
### punct_chars defaults
['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹', '।', '॥', '၊', '။', '።',
'፧', '፨', '', '', '᜶', '', '', '᥄', '᥅', '᪨', '᪩', '᪪', '᪫',
'᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿', '‼', '‽', '⁇', '⁈', '⁉',
'⸮', '⸼', '', '', '꘏', '꛳', '꛷', '꡶', '꡷', '꣎', '꣏', '꤯', '꧈',
'꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒', '﹖', '﹗', '', '', '',
'𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀', '𑃁', '𑅁', '𑅂', '𑅃', '𑇅',
'𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼', '𑊩', '𑑋', '𑑌', '𑗂',
'𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐', '𑗑', '𑗒', '𑗓',
'𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂', '𑩃', '𑪛',
'𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。']
```
## Sentencizer.\_\_call\_\_ {#call tag="method"}
Apply the sentencizer on a `Doc`. Typically, this happens automatically after
the component has been added to the pipeline using
[`nlp.add_pipe`](/api/language#add_pipe).
> #### Example
>
> ```python
> from spacy.lang.en import English
>
> nlp = English()
> nlp.add_pipe("sentencizer")
> doc = nlp("This is a sentence. This is another sentence.")
> assert len(list(doc.sents)) == 2
> ```
| Name | Type | Description |
| ----------- | ----- | ------------------------------------------------------------ |
| `doc` | `Doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. |
| **RETURNS** | `Doc` | The modified `Doc` with added sentence boundaries. |
## Sentencizer.to_disk {#to_disk tag="method"}
Save the sentencizer settings (punctuation characters) a directory. Will create
a file `sentencizer.json`. This also happens automatically when you save an
`nlp` object with a sentencizer added to its pipeline.
> #### Example
>
> ```python
> sentencizer = Sentencizer(punct_chars=[".", "?", "!", "。"])
> sentencizer.to_disk("/path/to/sentencizer.jsonl")
> ```
| Name | Type | Description |
| ------ | ------------ | ---------------------------------------------------------------------------------------------------------------- |
| `path` | str / `Path` | A path to a file, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
## Sentencizer.from_disk {#from_disk tag="method"}
Load the sentencizer settings from a file. Expects a JSON file. This also
happens automatically when you load an `nlp` object or model with a sentencizer
added to its pipeline.
> #### Example
>
> ```python
> sentencizer = Sentencizer()
> sentencizer.from_disk("/path/to/sentencizer.json")
> ```
| Name | Type | Description |
| ----------- | ------------- | -------------------------------------------------------------------------- |
| `path` | str / `Path` | A path to a JSON file. Paths may be either strings or `Path`-like objects. |
| **RETURNS** | `Sentencizer` | The modified `Sentencizer` object. |
## Sentencizer.to_bytes {#to_bytes tag="method"}
Serialize the sentencizer settings to a bytestring.
> #### Example
>
> ```python
> sentencizer = Sentencizer(punct_chars=[".", "?", "!", "。"])
> sentencizer_bytes = sentencizer.to_bytes()
> ```
| Name | Type | Description |
| ----------- | ----- | -------------------- |
| **RETURNS** | bytes | The serialized data. |
## Sentencizer.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> sentencizer_bytes = sentencizer.to_bytes()
> sentencizer = Sentencizer()
> sentencizer.from_bytes(sentencizer_bytes)
> ```
| Name | Type | Description |
| ------------ | ------------- | ---------------------------------- |
| `bytes_data` | bytes | The bytestring to load. |
| **RETURNS** | `Sentencizer` | The modified `Sentencizer` object. |