mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-29 11:26:28 +03:00
460 lines
19 KiB
Markdown
460 lines
19 KiB
Markdown
---
|
||
title: Embeddings, Transformers and Transfer Learning
|
||
teaser: Using transformer embeddings like BERT in spaCy
|
||
menu:
|
||
- ['Embedding Layers', 'embedding-layers']
|
||
- ['Transformers', 'transformers']
|
||
- ['Static Vectors', 'static-vectors']
|
||
- ['Pretraining', 'pretraining']
|
||
next: /usage/training
|
||
---
|
||
|
||
<!-- TODO: intro, short explanation of embeddings/transformers, point user to processing pipelines docs for intro -->
|
||
|
||
## Shared embedding layers {#embedding-layers}
|
||
|
||
<!-- TODO: write: `Tok2Vec` and `Transformer` components -->
|
||
|
||
<Accordion title="What’s the difference between word vectors and language models?" id="vectors-vs-language-models">
|
||
|
||
The key difference between [word vectors](#word-vectors) and contextual language
|
||
models such as [transformers](#transformers) is that word vectors model
|
||
**lexical types**, rather than _tokens_. If you have a list of terms with no
|
||
context around them, a transformer model like BERT can't really help you. BERT
|
||
is designed to understand language **in context**, which isn't what you have. A
|
||
word vectors table will be a much better fit for your task. However, if you do
|
||
have words in context — whole sentences or paragraphs of running text — word
|
||
vectors will only provide a very rough approximation of what the text is about.
|
||
|
||
Word vectors are also very computationally efficient, as they map a word to a
|
||
vector with a single indexing operation. Word vectors are therefore useful as a
|
||
way to **improve the accuracy** of neural network models, especially models that
|
||
are small or have received little or no pretraining. In spaCy, word vector
|
||
tables are only used as **static features**. spaCy does not backpropagate
|
||
gradients to the pretrained word vectors table. The static vectors table is
|
||
usually used in combination with a smaller table of learned task-specific
|
||
embeddings.
|
||
|
||
</Accordion>
|
||
|
||
<Accordion title="When should I add word vectors to my model?">
|
||
|
||
Word vectors are not compatible with most [transformer models](#transformers),
|
||
but if you're training another type of NLP network, it's almost always worth
|
||
adding word vectors to your model. As well as improving your final accuracy,
|
||
word vectors often make experiments more consistent, as the accuracy you reach
|
||
will be less sensitive to how the network is randomly initialized. High variance
|
||
due to random chance can slow down your progress significantly, as you need to
|
||
run many experiments to filter the signal from the noise.
|
||
|
||
Word vector features need to be enabled prior to training, and the same word
|
||
vectors table will need to be available at runtime as well. You cannot add word
|
||
vector features once the model has already been trained, and you usually cannot
|
||
replace one word vectors table with another without causing a significant loss
|
||
of performance.
|
||
|
||
</Accordion>
|
||
|
||
## Using transformer models {#transformers}
|
||
|
||
Transformers are a family of neural network architectures that compute **dense,
|
||
context-sensitive representations** for the tokens in your documents. Downstream
|
||
models in your pipeline can then use these representations as input features to
|
||
**improve their predictions**. You can connect multiple components to a single
|
||
transformer model, with any or all of those components giving feedback to the
|
||
transformer to fine-tune it to your tasks. spaCy's transformer support
|
||
interoperates with [PyTorch](https://pytorch.org) and the
|
||
[HuggingFace `transformers`](https://huggingface.co/transformers/) library,
|
||
giving you access to thousands of pretrained models for your pipelines. There
|
||
are many [great guides](http://jalammar.github.io/illustrated-transformer/) to
|
||
transformer models, but for practical purposes, you can simply think of them as
|
||
a drop-in replacement that let you achieve **higher accuracy** in exchange for
|
||
**higher training and runtime costs**.
|
||
|
||
### Setup and installation {#transformers-installation}
|
||
|
||
> #### System requirements
|
||
>
|
||
> We recommend an NVIDIA **GPU** with at least **10GB of memory** in order to
|
||
> work with transformer models. Make sure your GPU drivers are up to date and
|
||
> you have **CUDA v9+** installed.
|
||
|
||
> The exact requirements will depend on the transformer model. Training a
|
||
> transformer-based model without a GPU will be too slow for most practical
|
||
> purposes.
|
||
>
|
||
> Provisioning a new machine will require about **5GB** of data to be
|
||
> downloaded: 3GB CUDA runtime, 800MB PyTorch, 400MB CuPy, 500MB weights, 200MB
|
||
> spaCy and dependencies.
|
||
|
||
Once you have CUDA installed, you'll need to install two pip packages,
|
||
[`cupy`](https://docs.cupy.dev/en/stable/install.html) and
|
||
[`spacy-transformers`](https://github.com/explosion/spacy-transformers). `cupy`
|
||
is just like `numpy`, but for GPU. The best way to install it is to choose a
|
||
wheel that matches the version of CUDA you're using. You may also need to set
|
||
the `CUDA_PATH` environment variable if your CUDA runtime is installed in a
|
||
non-standard location. Putting it all together, if you had installed CUDA 10.2
|
||
in `/opt/nvidia/cuda`, you would run:
|
||
|
||
```bash
|
||
### Installation with CUDA
|
||
export CUDA_PATH="/opt/nvidia/cuda"
|
||
pip install cupy-cuda102
|
||
pip install spacy-transformers
|
||
```
|
||
|
||
### Runtime usage {#transformers-runtime}
|
||
|
||
Transformer models can be used as **drop-in replacements** for other types of
|
||
neural networks, so your spaCy pipeline can include them in a way that's
|
||
completely invisible to the user. Users will download, load and use the model in
|
||
the standard way, like any other spaCy pipeline. Instead of using the
|
||
transformers as subnetworks directly, you can also use them via the
|
||
[`Transformer`](/api/transformer) pipeline component.
|
||
|
||
![The processing pipeline with the transformer component](../images/pipeline_transformer.svg)
|
||
|
||
The `Transformer` component sets the
|
||
[`Doc._.trf_data`](/api/transformer#custom_attributes) extension attribute,
|
||
which lets you access the transformers outputs at runtime.
|
||
|
||
```bash
|
||
$ python -m spacy download en_core_trf_lg
|
||
```
|
||
|
||
```python
|
||
### Example
|
||
import spacy
|
||
from thinc.api import use_pytorch_for_gpu_memory, require_gpu
|
||
|
||
# Use the GPU, with memory allocations directed via PyTorch.
|
||
# This prevents out-of-memory errors that would otherwise occur from competing
|
||
# memory pools.
|
||
use_pytorch_for_gpu_memory()
|
||
require_gpu(0)
|
||
|
||
nlp = spacy.load("en_core_trf_lg")
|
||
for doc in nlp.pipe(["some text", "some other text"]):
|
||
tokvecs = doc._.trf_data.tensors[-1]
|
||
```
|
||
|
||
You can also customize how the [`Transformer`](/api/transformer) component sets
|
||
annotations onto the [`Doc`](/api/doc), by customizing the `annotation_setter`.
|
||
This callback will be called with the raw input and output data for the whole
|
||
batch, along with the batch of `Doc` objects, allowing you to implement whatever
|
||
you need. The annotation setter is called with a batch of [`Doc`](/api/doc)
|
||
objects and a [`FullTransformerBatch`](/api/transformer#fulltransformerbatch)
|
||
containing the transformers data for the batch.
|
||
|
||
```python
|
||
def custom_annotation_setter(docs, trf_data):
|
||
# TODO:
|
||
...
|
||
|
||
nlp = spacy.load("en_core_trf_lg")
|
||
nlp.get_pipe("transformer").annotation_setter = custom_annotation_setter
|
||
doc = nlp("This is a text")
|
||
print() # TODO:
|
||
```
|
||
|
||
### Training usage {#transformers-training}
|
||
|
||
The recommended workflow for training is to use spaCy's
|
||
[config system](/usage/training#config), usually via the
|
||
[`spacy train`](/api/cli#train) command. The training config defines all
|
||
component settings and hyperparameters in one place and lets you describe a tree
|
||
of objects by referring to creation functions, including functions you register
|
||
yourself. For details on how to get started with training your own model, check
|
||
out the [training quickstart](/usage/training#quickstart).
|
||
|
||
<Project id="en_core_bert">
|
||
|
||
The easiest way to get started is to clone a transformers-based project
|
||
template. Swap in your data, edit the settings and hyperparameters and train,
|
||
evaluate, package and visualize your model.
|
||
|
||
</Project>
|
||
|
||
The `[components]` section in the [`config.cfg`](/api/data-formats#config)
|
||
describes the pipeline components and the settings used to construct them,
|
||
including their model implementation. Here's a config snippet for the
|
||
[`Transformer`](/api/transformer) component, along with matching Python code. In
|
||
this case, the `[components.transformer]` block describes the `transformer`
|
||
component:
|
||
|
||
> #### Python equivalent
|
||
>
|
||
> ```python
|
||
> from spacy_transformers import Transformer, TransformerModel
|
||
> from spacy_transformers.annotation_setters import null_annotation_setter
|
||
> from spacy_transformers.span_getters import get_doc_spans
|
||
>
|
||
> trf = Transformer(
|
||
> nlp.vocab,
|
||
> TransformerModel(
|
||
> "bert-base-cased",
|
||
> get_spans=get_doc_spans,
|
||
> tokenizer_config={"use_fast": True},
|
||
> ),
|
||
> annotation_setter=null_annotation_setter,
|
||
> max_batch_items=4096,
|
||
> )
|
||
> ```
|
||
|
||
```ini
|
||
### config.cfg (excerpt)
|
||
[components.transformer]
|
||
factory = "transformer"
|
||
max_batch_items = 4096
|
||
|
||
[components.transformer.model]
|
||
@architectures = "spacy-transformers.TransformerModel.v1"
|
||
name = "bert-base-cased"
|
||
tokenizer_config = {"use_fast": true}
|
||
|
||
[components.transformer.model.get_spans]
|
||
@span_getters = "doc_spans.v1"
|
||
|
||
[components.transformer.annotation_setter]
|
||
@annotation_setters = "spacy-transformer.null_annotation_setter.v1"
|
||
|
||
```
|
||
|
||
The `[components.transformer.model]` block describes the `model` argument passed
|
||
to the transformer component. It's a Thinc
|
||
[`Model`](https://thinc.ai/docs/api-model) object that will be passed into the
|
||
component. Here, it references the function
|
||
[spacy-transformers.TransformerModel.v1](/api/architectures#TransformerModel)
|
||
registered in the [`architectures` registry](/api/top-level#registry). If a key
|
||
in a block starts with `@`, it's **resolved to a function** and all other
|
||
settings are passed to the function as arguments. In this case, `name`,
|
||
`tokenizer_config` and `get_spans`.
|
||
|
||
`get_spans` is a function that takes a batch of `Doc` object and returns lists
|
||
of potentially overlapping `Span` objects to process by the transformer. Several
|
||
[built-in functions](/api/transformer#span-getters) are available – for example,
|
||
to process the whole document or individual sentences. When the config is
|
||
resolved, the function is created and passed into the model as an argument.
|
||
|
||
<Infobox variant="warning">
|
||
|
||
Remember that the `config.cfg` used for training should contain **no missing
|
||
values** and requires all settings to be defined. You don't want any hidden
|
||
defaults creeping in and changing your results! spaCy will tell you if settings
|
||
are missing, and you can run
|
||
[`spacy init fill-config`](/api/cli#init-fill-config) to automatically fill in
|
||
all defaults.
|
||
|
||
</Infobox>
|
||
|
||
### Customizing the settings {#transformers-training-custom-settings}
|
||
|
||
To change any of the settings, you can edit the `config.cfg` and re-run the
|
||
training. To change any of the functions, like the span getter, you can replace
|
||
the name of the referenced function – e.g. `@span_getters = "sent_spans.v1"` to
|
||
process sentences. You can also register your own functions using the
|
||
`span_getters` registry:
|
||
|
||
> #### config.cfg
|
||
>
|
||
> ```ini
|
||
> [components.transformer.model.get_spans]
|
||
> @span_getters = "custom_sent_spans"
|
||
> ```
|
||
|
||
```python
|
||
### code.py
|
||
import spacy_transformers
|
||
|
||
@spacy_transformers.registry.span_getters("custom_sent_spans")
|
||
def configure_custom_sent_spans():
|
||
# TODO: write custom example
|
||
def get_sent_spans(docs):
|
||
return [list(doc.sents) for doc in docs]
|
||
|
||
return get_sent_spans
|
||
```
|
||
|
||
To resolve the config during training, spaCy needs to know about your custom
|
||
function. You can make it available via the `--code` argument that can point to
|
||
a Python file. For more details on training with custom code, see the
|
||
[training documentation](/usage/training#custom-code).
|
||
|
||
```bash
|
||
$ python -m spacy train ./config.cfg --code ./code.py
|
||
```
|
||
|
||
### Customizing the model implementations {#training-custom-model}
|
||
|
||
The [`Transformer`](/api/transformer) component expects a Thinc
|
||
[`Model`](https://thinc.ai/docs/api-model) object to be passed in as its `model`
|
||
argument. You're not limited to the implementation provided by
|
||
`spacy-transformers` – the only requirement is that your registered function
|
||
must return an object of type ~~Model[List[Doc], FullTransformerBatch]~~: that
|
||
is, a Thinc model that takes a list of [`Doc`](/api/doc) objects, and returns a
|
||
[`FullTransformerBatch`](/api/transformer#fulltransformerbatch) object with the
|
||
transformer data.
|
||
|
||
> #### Model type annotations
|
||
>
|
||
> In the documentation and code base, you may come across type annotations and
|
||
> descriptions of [Thinc](https://thinc.ai) model types, like ~~Model[List[Doc],
|
||
> List[Floats2d]]~~. This so-called generic type describes the layer and its
|
||
> input and output type – in this case, it takes a list of `Doc` objects as the
|
||
> input and list of 2-dimensional arrays of floats as the output. You can read
|
||
> more about defining Thinc models [here](https://thinc.ai/docs/usage-models).
|
||
> Also see the [type checking](https://thinc.ai/docs/usage-type-checking) for
|
||
> how to enable linting in your editor to see live feedback if your inputs and
|
||
> outputs don't match.
|
||
|
||
The same idea applies to task models that power the **downstream components**.
|
||
Most of spaCy's built-in model creation functions support a `tok2vec` argument,
|
||
which should be a Thinc layer of type ~~Model[List[Doc], List[Floats2d]]~~. This
|
||
is where we'll plug in our transformer model, using the
|
||
[Tok2VecListener](/api/architectures#Tok2VecListener) layer, which sneakily
|
||
delegates to the `Transformer` pipeline component.
|
||
|
||
```ini
|
||
### config.cfg (excerpt) {highlight="12"}
|
||
[components.ner]
|
||
factory = "ner"
|
||
|
||
[nlp.pipeline.ner.model]
|
||
@architectures = "spacy.TransitionBasedParser.v1"
|
||
nr_feature_tokens = 3
|
||
hidden_width = 128
|
||
maxout_pieces = 3
|
||
use_upper = false
|
||
|
||
[nlp.pipeline.ner.model.tok2vec]
|
||
@architectures = "spacy-transformers.Tok2VecListener.v1"
|
||
grad_factor = 1.0
|
||
|
||
[nlp.pipeline.ner.model.tok2vec.pooling]
|
||
@layers = "reduce_mean.v1"
|
||
```
|
||
|
||
The [Tok2VecListener](/api/architectures#Tok2VecListener) layer expects a
|
||
[pooling layer](https://thinc.ai/docs/api-layers#reduction-ops) as the argument
|
||
`pooling`, which needs to be of type ~~Model[Ragged, Floats2d]~~. This layer
|
||
determines how the vector for each spaCy token will be computed from the zero or
|
||
more source rows the token is aligned against. Here we use the
|
||
[`reduce_mean`](https://thinc.ai/docs/api-layers#reduce_mean) layer, which
|
||
averages the wordpiece rows. We could instead use
|
||
[`reduce_max`](https://thinc.ai/docs/api-layers#reduce_max), or a custom
|
||
function you write yourself.
|
||
|
||
You can have multiple components all listening to the same transformer model,
|
||
and all passing gradients back to it. By default, all of the gradients will be
|
||
**equally weighted**. You can control this with the `grad_factor` setting, which
|
||
lets you reweight the gradients from the different listeners. For instance,
|
||
setting `grad_factor = 0` would disable gradients from one of the listeners,
|
||
while `grad_factor = 2.0` would multiply them by 2. This is similar to having a
|
||
custom learning rate for each component. Instead of a constant, you can also
|
||
provide a schedule, allowing you to freeze the shared parameters at the start of
|
||
training.
|
||
|
||
## Static vectors {#static-vectors}
|
||
|
||
<!-- TODO: write -->
|
||
|
||
### Using word vectors in your models {#word-vectors-models}
|
||
|
||
Many neural network models are able to use word vector tables as additional
|
||
features, which sometimes results in significant improvements in accuracy.
|
||
spaCy's built-in embedding layer,
|
||
[MultiHashEmbed](/api/architectures#MultiHashEmbed), can be configured to use
|
||
word vector tables using the `also_use_static_vectors` flag. This setting is
|
||
also available on the [MultiHashEmbedCNN](/api/architectures#MultiHashEmbedCNN)
|
||
layer, which builds the default token-to-vector encoding architecture.
|
||
|
||
```ini
|
||
[tagger.model.tok2vec.embed]
|
||
@architectures = "spacy.MultiHashEmbed.v1"
|
||
width = 128
|
||
rows = 7000
|
||
also_embed_subwords = true
|
||
also_use_static_vectors = true
|
||
```
|
||
|
||
<Infobox title="How it works" emoji="💡">
|
||
|
||
The configuration system will look up the string `"spacy.MultiHashEmbed.v1"` in
|
||
the `architectures` [registry](/api/top-level#registry), and call the returned
|
||
object with the rest of the arguments from the block. This will result in a call
|
||
to the
|
||
[`MultiHashEmbed`](https://github.com/explosion/spacy/tree/develop/spacy/ml/models/tok2vec.py)
|
||
function, which will return a [Thinc](https://thinc.ai) model object with the
|
||
type signature ~~Model[List[Doc], List[Floats2d]]~~. Because the embedding layer
|
||
takes a list of `Doc` objects as input, it does not need to store a copy of the
|
||
vectors table. The vectors will be retrieved from the `Doc` objects that are
|
||
passed in, via the `doc.vocab.vectors` attribute. This part of the process is
|
||
handled by the [StaticVectors](/api/architectures#StaticVectors) layer.
|
||
|
||
</Infobox>
|
||
|
||
#### Creating a custom embedding layer {#custom-embedding-layer}
|
||
|
||
The [MultiHashEmbed](/api/architectures#StaticVectors) layer is spaCy's
|
||
recommended strategy for constructing initial word representations for your
|
||
neural network models, but you can also implement your own. You can register any
|
||
function to a string name, and then reference that function within your config
|
||
(see the [training docs](/usage/training) for more details). To try this out,
|
||
you can save the following little example to a new Python file:
|
||
|
||
```python
|
||
from spacy.ml.staticvectors import StaticVectors
|
||
from spacy.util import registry
|
||
|
||
print("I was imported!")
|
||
|
||
@registry.architectures("my_example.MyEmbedding.v1")
|
||
def MyEmbedding(output_width: int) -> Model[List[Doc], List[Floats2d]]:
|
||
print("I was called!")
|
||
return StaticVectors(nO=output_width)
|
||
```
|
||
|
||
If you pass the path to your file to the [`spacy train`](/api/cli#train) command
|
||
using the `--code` argument, your file will be imported, which means the
|
||
decorator registering the function will be run. Your function is now on equal
|
||
footing with any of spaCy's built-ins, so you can drop it in instead of any
|
||
other model with the same input and output signature. For instance, you could
|
||
use it in the tagger model as follows:
|
||
|
||
```ini
|
||
[tagger.model.tok2vec.embed]
|
||
@architectures = "my_example.MyEmbedding.v1"
|
||
output_width = 128
|
||
```
|
||
|
||
Now that you have a custom function wired into the network, you can start
|
||
implementing the logic you're interested in. For example, let's say you want to
|
||
try a relatively simple embedding strategy that makes use of static word
|
||
vectors, but combines them via summation with a smaller table of learned
|
||
embeddings.
|
||
|
||
```python
|
||
from thinc.api import add, chain, remap_ids, Embed
|
||
from spacy.ml.staticvectors import StaticVectors
|
||
|
||
@registry.architectures("my_example.MyEmbedding.v1")
|
||
def MyCustomVectors(
|
||
output_width: int,
|
||
vector_width: int,
|
||
embed_rows: int,
|
||
key2row: Dict[int, int]
|
||
) -> Model[List[Doc], List[Floats2d]]:
|
||
return add(
|
||
StaticVectors(nO=output_width),
|
||
chain(
|
||
FeatureExtractor(["ORTH"]),
|
||
remap_ids(key2row),
|
||
Embed(nO=output_width, nV=embed_rows)
|
||
)
|
||
)
|
||
```
|
||
|
||
## Pretraining {#pretraining}
|
||
|
||
<!-- TODO: write -->
|