mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			1043 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			1043 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: Language
 | ||
| teaser: A text-processing pipeline
 | ||
| tag: class
 | ||
| source: spacy/language.py
 | ||
| ---
 | ||
| 
 | ||
| Usually you'll load this once per process as `nlp` and pass the instance around
 | ||
| your application. The `Language` class is created when you call
 | ||
| [`spacy.load`](/api/top-level#spacy.load) and contains the shared vocabulary and
 | ||
| [language data](/usage/adding-languages), optional binary weights, e.g. provided
 | ||
| by a [trained pipeline](/models), and the
 | ||
| [processing pipeline](/usage/processing-pipelines) containing components like
 | ||
| the tagger or parser that are called on a document in order. You can also add
 | ||
| your own processing pipeline components that take a `Doc` object, modify it and
 | ||
| return it.
 | ||
| 
 | ||
| ## Language.\_\_init\_\_ {#init tag="method"}
 | ||
| 
 | ||
| Initialize a `Language` object.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > # Construction from subclass
 | ||
| > from spacy.lang.en import English
 | ||
| > nlp = English()
 | ||
| >
 | ||
| > # Construction from scratch
 | ||
| > from spacy.vocab import Vocab
 | ||
| > from spacy.language import Language
 | ||
| > nlp = Language(Vocab())
 | ||
| > ```
 | ||
| 
 | ||
| | Name               | Description                                                                                                              |
 | ||
| | ------------------ | ------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `vocab`            | A `Vocab` object. If `True`, a vocab is created using the default language data settings. ~~Vocab~~                      |
 | ||
| | _keyword-only_     |                                                                                                                          |
 | ||
| | `max_length`       | Maximum number of characters allowed in a single text. Defaults to `10 ** 6`. ~~int~~                                    |
 | ||
| | `meta`             | Custom meta data for the `Language` class. Is written to by pipelines to add meta data. ~~dict~~                         |
 | ||
| | `create_tokenizer` | Optional function that receives the `nlp` object and returns a tokenizer. ~~Callable[[Language], Callable[[str], Doc]]~~ |
 | ||
| 
 | ||
| ## Language.from_config {#from_config tag="classmethod" new="3"}
 | ||
| 
 | ||
| Create a `Language` object from a loaded config. Will set up the tokenizer and
 | ||
| language data, add pipeline components based on the pipeline and components
 | ||
| define in the config and validate the results. If no config is provided, the
 | ||
| default config of the given language is used. This is also how spaCy loads a
 | ||
| model under the hood based on its [`config.cfg`](/api/data-formats#config).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from thinc.api import Config
 | ||
| > from spacy.language import Language
 | ||
| >
 | ||
| > config = Config().from_disk("./config.cfg")
 | ||
| > nlp = Language.from_config(config)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                                                      |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `config`       | The loaded config. ~~Union[Dict[str, Any], Config]~~                                                                                             |
 | ||
| | _keyword-only_ |                                                                                                                                                  |
 | ||
| | `disable`      | List of pipeline component names to disable. ~~Iterable[str]~~                                                                                   |
 | ||
| | `auto_fill`    | Whether to automatically fill in missing values in the config, based on defaults and function argument annotations. Defaults to `True`. ~~bool~~ |
 | ||
| | `validate`     | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~                   |
 | ||
| | **RETURNS**    | The initialized object. ~~Language~~                                                                                                             |
 | ||
| 
 | ||
| ## Language.component {#component tag="classmethod" new="3"}
 | ||
| 
 | ||
| Register a custom pipeline component under a given name. This allows
 | ||
| initializing the component by name using
 | ||
| [`Language.add_pipe`](/api/language#add_pipe) and referring to it in
 | ||
| [config files](/usage/training#config). This classmethod and decorator is
 | ||
| intended for **simple stateless functions** that take a `Doc` and return it. For
 | ||
| more complex stateful components that allow settings and need access to the
 | ||
| shared `nlp` object, use the [`Language.factory`](/api/language#factory)
 | ||
| decorator. For more details and examples, see the
 | ||
| [usage documentation](/usage/processing-pipelines#custom-components).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.language import Language
 | ||
| >
 | ||
| > # Usage as a decorator
 | ||
| > @Language.component("my_component")
 | ||
| > def my_component(doc):
 | ||
| >    # Do something to the doc
 | ||
| >    return doc
 | ||
| >
 | ||
| > # Usage as a function
 | ||
| > Language.component("my_component2", func=my_component)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                                                                        |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `name`         | The name of the component factory. ~~str~~                                                                                                                         |
 | ||
| | _keyword-only_ |                                                                                                                                                                    |
 | ||
| | `assigns`      | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
 | ||
| | `requires`     | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
 | ||
| | `retokenizes`  | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~                                               |
 | ||
| | `func`         | Optional function if not used a a decorator. ~~Optional[Callable[[Doc], Doc]]~~                                                                                    |
 | ||
| 
 | ||
| ## Language.factory {#factory tag="classmethod"}
 | ||
| 
 | ||
| Register a custom pipeline component factory under a given name. This allows
 | ||
| initializing the component by name using
 | ||
| [`Language.add_pipe`](/api/language#add_pipe) and referring to it in
 | ||
| [config files](/usage/training#config). The registered factory function needs to
 | ||
| take at least two **named arguments** which spaCy fills in automatically: `nlp`
 | ||
| for the current `nlp` object and `name` for the component instance name. This
 | ||
| can be useful to distinguish multiple instances of the same component and allows
 | ||
| trainable components to add custom losses using the component instance name. The
 | ||
| `default_config` defines the default values of the remaining factory arguments.
 | ||
| It's merged into the [`nlp.config`](/api/language#config). For more details and
 | ||
| examples, see the
 | ||
| [usage documentation](/usage/processing-pipelines#custom-components).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.language import Language
 | ||
| >
 | ||
| > # Usage as a decorator
 | ||
| > @Language.factory(
 | ||
| >    "my_component",
 | ||
| >    default_config={"some_setting": True},
 | ||
| > )
 | ||
| > def create_my_component(nlp, name, some_setting):
 | ||
| >      return MyComponent(some_setting)
 | ||
| >
 | ||
| > # Usage as function
 | ||
| > Language.factory(
 | ||
| >     "my_component",
 | ||
| >     default_config={"some_setting": True},
 | ||
| >     func=create_my_component
 | ||
| > )
 | ||
| > ```
 | ||
| 
 | ||
| | Name                    | Description                                                                                                                                                                                                                                      |
 | ||
| | ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `name`                  | The name of the component factory. ~~str~~                                                                                                                                                                                                       |
 | ||
| | _keyword-only_          |                                                                                                                                                                                                                                                  |
 | ||
| | `default_config`        | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~                                                                                                                                                   |
 | ||
| | `assigns`               | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~                                                                               |
 | ||
| | `requires`              | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~                                                                               |
 | ||
| | `retokenizes`           | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~                                                                                                                             |
 | ||
| | `scores`                | All scores set by the components if it's trainable, e.g. `["ents_f", "ents_r", "ents_p"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~                                                                     |
 | ||
| | `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. ~~Dict[str, float]~~ |
 | ||
| | `func`                  | Optional function if not used a a decorator. ~~Optional[Callable[[...], Callable[[Doc], Doc]]]~~                                                                                                                                                 |
 | ||
| 
 | ||
| ## Language.\_\_call\_\_ {#call tag="method"}
 | ||
| 
 | ||
| Apply the pipeline to some text. The text can span multiple sentences, and can
 | ||
| contain arbitrary whitespace. Alignment into the original string is preserved.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > doc = nlp("An example sentence. Another sentence.")
 | ||
| > assert (doc[0].text, doc[0].head.tag_) == ("An", "NN")
 | ||
| > ```
 | ||
| 
 | ||
| | Name            | Description                                                                                                                                    |
 | ||
| | --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `text`          | The text to be processed. ~~str~~                                                                                                              |
 | ||
| | _keyword-only_  |                                                                                                                                                |
 | ||
| | `disable`       | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~                                                |
 | ||
| | `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
 | ||
| | **RETURNS**     | A container for accessing the annotations. ~~Doc~~                                                                                             |
 | ||
| 
 | ||
| ## Language.pipe {#pipe tag="method"}
 | ||
| 
 | ||
| Process texts as a stream, and yield `Doc` objects in order. This is usually
 | ||
| more efficient than processing texts one-by-one.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > texts = ["One document.", "...", "Lots of documents"]
 | ||
| > for doc in nlp.pipe(texts, batch_size=50):
 | ||
| >     assert doc.is_parsed
 | ||
| > ```
 | ||
| 
 | ||
| | Name                                       | Description                                                                                                                                                         |
 | ||
| | ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `texts`                                    | A sequence of strings. ~~Iterable[str]~~                                                                                                                            |
 | ||
| | _keyword-only_                             |                                                                                                                                                                     |
 | ||
| | `as_tuples`                                | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. ~~bool~~ |
 | ||
| | `batch_size`                               | The number of texts to buffer. ~~int~~                                                                                                                              |
 | ||
| | `disable`                                  | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~                                                                     |
 | ||
| | `cleanup`                                  | If `True`, unneeded strings are freed to control memory use. Experimental. ~~bool~~                                                                                 |
 | ||
| | `component_cfg`                            | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~                      |
 | ||
| | `n_process` <Tag variant="new">2.2.2</Tag> | Number of processors to use. Defaults to `1`. ~~int~~                                                                                                               |
 | ||
| | **YIELDS**                                 | Documents in the order of the original text. ~~Doc~~                                                                                                                |
 | ||
| 
 | ||
| ## Language.begin_training {#begin_training tag="method"}
 | ||
| 
 | ||
| Initialize the pipeline for training and return an
 | ||
| [`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
 | ||
| function that returns an iterable of [`Example`](/api/example) objects. The data
 | ||
| examples can either be the full training data or a representative sample. They
 | ||
| are used to **initialize the models** of trainable pipeline components and are
 | ||
| passed each component's [`begin_training`](/api/pipe#begin_training) method, if
 | ||
| available. Initialization includes validating the network,
 | ||
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | ||
| setting up the label scheme based on the data.
 | ||
| 
 | ||
| <Infobox variant="warning" title="Changed in v3.0">
 | ||
| 
 | ||
| The `Language.update` method now takes a **function** that is called with no
 | ||
| arguments and returns a sequence of [`Example`](/api/example) objects instead of
 | ||
| tuples of `Doc` and `GoldParse` objects.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > get_examples = lambda: examples
 | ||
| > optimizer = nlp.begin_training(get_examples)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                                                              |
 | ||
| | -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `get_examples` | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Optional[Callable[[], Iterable[Example]]]~~ |
 | ||
| | _keyword-only_ |                                                                                                                                                          |
 | ||
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~                                            |
 | ||
| | **RETURNS**    | The optimizer. ~~Optimizer~~                                                                                                                             |
 | ||
| 
 | ||
| ## Language.resume_training {#resume_training tag="method,experimental" new="3"}
 | ||
| 
 | ||
| Continue training a trained pipeline. Create and return an optimizer, and
 | ||
| initialize "rehearsal" for any pipeline component that has a `rehearse` method.
 | ||
| Rehearsal is used to prevent models from "forgetting" their initialized
 | ||
| "knowledge". To perform rehearsal, collect samples of text you want the models
 | ||
| to retain performance on, and call [`nlp.rehearse`](/api/language#rehearse) with
 | ||
| a batch of [Example](/api/example) objects.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > optimizer = nlp.resume_training()
 | ||
| > nlp.rehearse(examples, sgd=optimizer)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                   |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------- |
 | ||
| | _keyword-only_ |                                                                                                               |
 | ||
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
 | ||
| | **RETURNS**    | The optimizer. ~~Optimizer~~                                                                                  |
 | ||
| 
 | ||
| ## Language.update {#update tag="method"}
 | ||
| 
 | ||
| Update the models in the pipeline.
 | ||
| 
 | ||
| <Infobox variant="warning" title="Changed in v3.0">
 | ||
| 
 | ||
| The `Language.update` method now takes a batch of [`Example`](/api/example)
 | ||
| objects instead of the raw texts and annotations or `Doc` and `GoldParse`
 | ||
| objects. An [`Example`](/api/example) streamlines how data is passed around. It
 | ||
| stores two `Doc` objects: one for holding the gold-standard reference data, and
 | ||
| one for holding the predictions of the pipeline.
 | ||
| 
 | ||
| For most use cases, you shouldn't have to write your own training scripts
 | ||
| anymore. Instead, you can use [`spacy train`](/api/cli#train) with a config file
 | ||
| and custom registered functions if needed. See the
 | ||
| [training documentation](/usage/training) for details.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > for raw_text, entity_offsets in train_data:
 | ||
| >     doc = nlp.make_doc(raw_text)
 | ||
| >     example = Example.from_dict(doc, {"entities": entity_offsets})
 | ||
| >     nlp.update([example], sgd=optimizer)
 | ||
| > ```
 | ||
| 
 | ||
| | Name            | Description                                                                                                                                    |
 | ||
| | --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `examples`      | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                                              |
 | ||
| | _keyword-only_  |                                                                                                                                                |
 | ||
| | `drop`          | The dropout rate. ~~float~~                                                                                                                    |
 | ||
| | `sgd`           | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~                                  |
 | ||
| | `losses`        | Dictionary to update with the loss, keyed by pipeline component. ~~Optional[Dict[str, float]]~~                                                |
 | ||
| | `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
 | ||
| | **RETURNS**     | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                                          |
 | ||
| 
 | ||
| ## Language.rehearse {#rehearse tag="method,experimental" new="3"}
 | ||
| 
 | ||
| Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
 | ||
| current model to make predictions similar to an initial model, to try to address
 | ||
| the "catastrophic forgetting" problem. This feature is experimental.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > optimizer = nlp.resume_training()
 | ||
| > losses = nlp.rehearse(examples, sgd=optimizer)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                   |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------- |
 | ||
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                             |
 | ||
| | _keyword-only_ |                                                                                                               |
 | ||
| | `drop`         | The dropout rate. ~~float~~                                                                                   |
 | ||
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
 | ||
| | `losses`       | Dictionary to update with the loss, keyed by pipeline component. ~~Optional[Dict[str, float]]~~               |
 | ||
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                         |
 | ||
| 
 | ||
| ## Language.evaluate {#evaluate tag="method"}
 | ||
| 
 | ||
| Evaluate a pipeline's components.
 | ||
| 
 | ||
| <Infobox variant="warning" title="Changed in v3.0">
 | ||
| 
 | ||
| The `Language.update` method now takes a batch of [`Example`](/api/example)
 | ||
| objects instead of tuples of `Doc` and `GoldParse` objects.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > scores = nlp.evaluate(examples)
 | ||
| > print(scores)
 | ||
| > ```
 | ||
| 
 | ||
| | Name            | Description                                                                                                                                    |
 | ||
| | --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `examples`      | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                                              |
 | ||
| | _keyword-only_  |                                                                                                                                                |
 | ||
| | `batch_size`    | The batch size to use. ~~int~~                                                                                                                 |
 | ||
| | `scorer`        | Optional [`Scorer`](/api/scorer) to use. If not passed in, a new one will be created. ~~Optional[Scorer]~~                                     |
 | ||
| | `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
 | ||
| | `scorer_cfg`    | Optional dictionary of keyword arguments for the `Scorer`. Defaults to `None`. ~~Optional[Dict[str, Any]]~~                                    |
 | ||
| | **RETURNS**     | A dictionary of evaluation scores. ~~Dict[str, Union[float, Dict[str, float]]]~~                                                               |
 | ||
| 
 | ||
| ## Language.use_params {#use_params tag="contextmanager, method"}
 | ||
| 
 | ||
| Replace weights of models in the pipeline with those provided in the params
 | ||
| dictionary. Can be used as a context manager, in which case, models go back to
 | ||
| their original weights after the block.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > with nlp.use_params(optimizer.averages):
 | ||
| >     nlp.to_disk("/tmp/checkpoint")
 | ||
| > ```
 | ||
| 
 | ||
| | Name     | Description                                            |
 | ||
| | -------- | ------------------------------------------------------ |
 | ||
| | `params` | A dictionary of parameters keyed by model ID. ~~dict~~ |
 | ||
| 
 | ||
| ## Language.add_pipe {#add_pipe tag="method" new="2"}
 | ||
| 
 | ||
| Add a component to the processing pipeline. Expects a name that maps to a
 | ||
| component factory registered using
 | ||
| [`@Language.component`](/api/language#component) or
 | ||
| [`@Language.factory`](/api/language#factory). Components should be callables
 | ||
| that take a `Doc` object, modify it and return it. Only one of `before`,
 | ||
| `after`, `first` or `last` can be set. Default behavior is `last=True`.
 | ||
| 
 | ||
| <Infobox title="Changed in v3.0" variant="warning">
 | ||
| 
 | ||
| As of v3.0, the [`Language.add_pipe`](/api/language#add_pipe) method doesn't
 | ||
| take callables anymore and instead expects the **name of a component factory**
 | ||
| registered using [`@Language.component`](/api/language#component) or
 | ||
| [`@Language.factory`](/api/language#factory). It now takes care of creating the
 | ||
| component, adds it to the pipeline and returns it.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > @Language.component("component")
 | ||
| > def component_func(doc):
 | ||
| >     # modify Doc and return it return doc
 | ||
| >
 | ||
| > nlp.add_pipe("component", before="ner")
 | ||
| > component = nlp.add_pipe("component", name="custom_name", last=True)
 | ||
| >
 | ||
| > # Add component from source pipeline
 | ||
| > source_nlp = spacy.load("en_core_web_sm")
 | ||
| > nlp.add_pipe("ner", source=source_nlp)
 | ||
| > ```
 | ||
| 
 | ||
| | Name                                  | Description                                                                                                                                                                                                                                                                              |
 | ||
| | ------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `factory_name`                        | Name of the registered component factory. ~~str~~                                                                                                                                                                                                                                        |
 | ||
| | `name`                                | Optional unique name of pipeline component instance. If not set, the factory name is used. An error is raised if the name already exists in the pipeline. ~~Optional[str]~~                                                                                                              |
 | ||
| | _keyword-only_                        |                                                                                                                                                                                                                                                                                          |
 | ||
| | `before`                              | Component name or index to insert component directly before. ~~Optional[Union[str, int]]~~                                                                                                                                                                                               |
 | ||
| | `after`                               | Component name or index to insert component directly after. ~~Optional[Union[str, int]]~~                                                                                                                                                                                                |
 | ||
| | `first`                               | Insert component first / not first in the pipeline. ~~Optional[bool]~~                                                                                                                                                                                                                   |
 | ||
| | `last`                                | Insert component last / not last in the pipeline. ~~Optional[bool]~~                                                                                                                                                                                                                     |
 | ||
| | `config` <Tag variant="new">3</Tag>   | Optional config parameters to use for this component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~                                                                                                                          |
 | ||
| | `source` <Tag variant="new">3</Tag>   | Optional source pipeline to copy component from. If a source is provided, the `factory_name` is interpreted as the name of the component in the source pipeline. Make sure that the vocab, vectors and settings of the source pipeline match the target pipeline. ~~Optional[Language]~~ |
 | ||
| | `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~                                                                                                                                                           |
 | ||
| | **RETURNS**                           | The pipeline component. ~~Callable[[Doc], Doc]~~                                                                                                                                                                                                                                         |
 | ||
| 
 | ||
| ## Language.create_pipe {#create_pipe tag="method" new="2"}
 | ||
| 
 | ||
| Create a pipeline component from a factory.
 | ||
| 
 | ||
| <Infobox title="Changed in v3.0" variant="warning">
 | ||
| 
 | ||
| As of v3.0, the [`Language.add_pipe`](/api/language#add_pipe) method also takes
 | ||
| the string name of the factory, creates the component, adds it to the pipeline
 | ||
| and returns it. The `Language.create_pipe` method is now mostly used internally.
 | ||
| To create a component and add it to the pipeline, you should always use
 | ||
| `Language.add_pipe`.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > parser = nlp.create_pipe("parser")
 | ||
| > ```
 | ||
| 
 | ||
| | Name                                  | Description                                                                                                                                                                 |
 | ||
| | ------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `factory_name`                        | Name of the registered component factory. ~~str~~                                                                                                                           |
 | ||
| | `name`                                | Optional unique name of pipeline component instance. If not set, the factory name is used. An error is raised if the name already exists in the pipeline. ~~Optional[str]~~ |
 | ||
| | _keyword-only_                        |                                                                                                                                                                             |
 | ||
| | `config` <Tag variant="new">3</Tag>   | Optional config parameters to use for this component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~             |
 | ||
| | `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~                                              |
 | ||
| | **RETURNS**                           | The pipeline component. ~~Callable[[Doc], Doc]~~                                                                                                                            |
 | ||
| 
 | ||
| ## Language.has_factory {#has_factory tag="classmethod" new="3"}
 | ||
| 
 | ||
| Check whether a factory name is registered on the `Language` class or subclass.
 | ||
| Will check for
 | ||
| [language-specific factories](/usage/processing-pipelines#factories-language)
 | ||
| registered on the subclass, as well as general-purpose factories registered on
 | ||
| the `Language` base class, available to all subclasses.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.language import Language
 | ||
| > from spacy.lang.en import English
 | ||
| >
 | ||
| > @English.component("component")
 | ||
| > def component(doc):
 | ||
| >     return doc
 | ||
| >
 | ||
| > assert English.has_factory("component")
 | ||
| > assert not Language.has_factory("component")
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                         |
 | ||
| | ----------- | ------------------------------------------------------------------- |
 | ||
| | `name`      | Name of the pipeline factory to check. ~~str~~                      |
 | ||
| | **RETURNS** | Whether a factory of that name is registered on the class. ~~bool~~ |
 | ||
| 
 | ||
| ## Language.has_pipe {#has_pipe tag="method" new="2"}
 | ||
| 
 | ||
| Check whether a component is present in the pipeline. Equivalent to
 | ||
| `name in nlp.pipe_names`.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > @Language.component("component")
 | ||
| > def component(doc):
 | ||
| >     return doc
 | ||
| >
 | ||
| > nlp.add_pipe("component", name="my_component")
 | ||
| > assert "my_component" in nlp.pipe_names
 | ||
| > assert nlp.has_pipe("my_component")
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                       |
 | ||
| | ----------- | ----------------------------------------------------------------- |
 | ||
| | `name`      | Name of the pipeline component to check. ~~str~~                  |
 | ||
| | **RETURNS** | Whether a component of that name exists in the pipeline. ~~bool~~ |
 | ||
| 
 | ||
| ## Language.get_pipe {#get_pipe tag="method" new="2"}
 | ||
| 
 | ||
| Get a pipeline component for a given component name.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > parser = nlp.get_pipe("parser")
 | ||
| > custom_component = nlp.get_pipe("custom_component")
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                      |
 | ||
| | ----------- | ------------------------------------------------ |
 | ||
| | `name`      | Name of the pipeline component to get. ~~str~~   |
 | ||
| | **RETURNS** | The pipeline component. ~~Callable[[Doc], Doc]~~ |
 | ||
| 
 | ||
| ## Language.replace_pipe {#replace_pipe tag="method" new="2"}
 | ||
| 
 | ||
| Replace a component in the pipeline.
 | ||
| 
 | ||
| <Infobox title="Changed in v3.0" variant="warning">
 | ||
| 
 | ||
| As of v3.0, the `Language.replace_pipe` method doesn't take callables anymore
 | ||
| and instead expects the **name of a component factory** registered using
 | ||
| [`@Language.component`](/api/language#component) or
 | ||
| [`@Language.factory`](/api/language#factory).
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.replace_pipe("parser", my_custom_parser)
 | ||
| > ```
 | ||
| 
 | ||
| | Name                                  | Description                                                                                                                                                        |
 | ||
| | ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `name`                                | Name of the component to replace. ~~str~~                                                                                                                          |
 | ||
| | `component`                           | The factory name of the component to insert. ~~str~~                                                                                                               |
 | ||
| | _keyword-only_                        |                                                                                                                                                                    |
 | ||
| | `config` <Tag variant="new">3</Tag>   | Optional config parameters to use for the new component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~ |
 | ||
| | `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~                                     |
 | ||
| 
 | ||
| ## Language.rename_pipe {#rename_pipe tag="method" new="2"}
 | ||
| 
 | ||
| Rename a component in the pipeline. Useful to create custom names for
 | ||
| pre-defined and pre-loaded components. To change the default name of a component
 | ||
| added to the pipeline, you can also use the `name` argument on
 | ||
| [`add_pipe`](/api/language#add_pipe).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.rename_pipe("parser", "spacy_parser")
 | ||
| > ```
 | ||
| 
 | ||
| | Name       | Description                              |
 | ||
| | ---------- | ---------------------------------------- |
 | ||
| | `old_name` | Name of the component to rename. ~~str~~ |
 | ||
| | `new_name` | New name of the component. ~~str~~       |
 | ||
| 
 | ||
| ## Language.remove_pipe {#remove_pipe tag="method" new="2"}
 | ||
| 
 | ||
| Remove a component from the pipeline. Returns the removed component name and
 | ||
| component function.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > name, component = nlp.remove_pipe("parser")
 | ||
| > assert name == "parser"
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                                                |
 | ||
| | ----------- | ------------------------------------------------------------------------------------------ |
 | ||
| | `name`      | Name of the component to remove. ~~str~~                                                   |
 | ||
| | **RETURNS** | A `(name, component)` tuple of the removed component. ~~Tuple[str, Callable[[Doc], Doc]]~~ |
 | ||
| 
 | ||
| ## Language.disable_pipe {#disable_pipe tag="method" new="3"}
 | ||
| 
 | ||
| Temporarily disable a pipeline component so it's not run as part of the
 | ||
| pipeline. Disabled components are listed in
 | ||
| [`nlp.disabled`](/api/language#attributes) and included in
 | ||
| [`nlp.components`](/api/language#attributes), but not in
 | ||
| [`nlp.pipeline`](/api/language#pipeline), so they're not run when you process a
 | ||
| `Doc` with the `nlp` object. If the component is already disabled, this method
 | ||
| does nothing.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.add_pipe("ner")
 | ||
| > nlp.add_pipe("textcat")
 | ||
| > assert nlp.pipe_names == ["ner", "textcat"]
 | ||
| > nlp.disable_pipe("ner")
 | ||
| > assert nlp.pipe_names == ["textcat"]
 | ||
| > assert nlp.component_names == ["ner", "textcat"]
 | ||
| > assert nlp.disabled == ["ner"]
 | ||
| > ```
 | ||
| 
 | ||
| | Name   | Description                               |
 | ||
| | ------ | ----------------------------------------- |
 | ||
| | `name` | Name of the component to disable. ~~str~~ |
 | ||
| 
 | ||
| ## Language.enable_pipe {#enable_pipe tag="method" new="3"}
 | ||
| 
 | ||
| Enable a previously disable component (e.g. via
 | ||
| [`Language.disable_pipes`](/api/language#disable_pipes)) so it's run as part of
 | ||
| the pipeline, [`nlp.pipeline`](/api/language#pipeline). If the component is
 | ||
| already enabled, this method does nothing.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.disable_pipe("ner")
 | ||
| > assert "ner" in nlp.disabled
 | ||
| > assert not "ner" in nlp.pipe_names
 | ||
| > nlp.enable_pipe("ner")
 | ||
| > assert not "ner" in nlp.disabled
 | ||
| > assert "ner" in nlp.pipe_names
 | ||
| > ```
 | ||
| 
 | ||
| | Name   | Description                              |
 | ||
| | ------ | ---------------------------------------- |
 | ||
| | `name` | Name of the component to enable. ~~str~~ |
 | ||
| 
 | ||
| ## Language.select_pipes {#select_pipes tag="contextmanager, method" new="3"}
 | ||
| 
 | ||
| Disable one or more pipeline components. If used as a context manager, the
 | ||
| pipeline will be restored to the initial state at the end of the block.
 | ||
| Otherwise, a `DisabledPipes` object is returned, that has a `.restore()` method
 | ||
| you can use to undo your changes. You can specify either `disable` (as a list or
 | ||
| string), or `enable`. In the latter case, all components not in the `enable`
 | ||
| list, will be disabled. Under the hood, this method calls into
 | ||
| [`disable_pipe`](/api/language#disable_pipe) and
 | ||
| [`enable_pipe`](/api/language#enable_pipe).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > with nlp.select_pipes(disable=["tagger", "parser"]):
 | ||
| >    nlp.begin_training()
 | ||
| >
 | ||
| > with nlp.select_pipes(enable="ner"):
 | ||
| >     nlp.begin_training()
 | ||
| >
 | ||
| > disabled = nlp.select_pipes(disable=["tagger", "parser"])
 | ||
| > nlp.begin_training()
 | ||
| > disabled.restore()
 | ||
| > ```
 | ||
| 
 | ||
| <Infobox title="Changed in v3.0" variant="warning" id="disable_pipes">
 | ||
| 
 | ||
| As of spaCy v3.0, the `disable_pipes` method has been renamed to `select_pipes`:
 | ||
| 
 | ||
| ```diff
 | ||
| - nlp.disable_pipes(["tagger", "parser"])
 | ||
| + nlp.select_pipes(disable=["tagger", "parser"])
 | ||
| ```
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| | Name           | Description                                                                                            |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------ |
 | ||
| | _keyword-only_ |                                                                                                        |
 | ||
| | `disable`      | Name(s) of pipeline components to disable. ~~Optional[Union[str, Iterable[str]]]~~                     |
 | ||
| | `enable`       | Names(s) of pipeline components that will not be disabled. ~~Optional[Union[str, Iterable[str]]]~~     |
 | ||
| | **RETURNS**    | The disabled pipes that can be restored by calling the object's `.restore()` method. ~~DisabledPipes~~ |
 | ||
| 
 | ||
| ## Language.get_factory_meta {#get_factory_meta tag="classmethod" new="3"}
 | ||
| 
 | ||
| Get the factory meta information for a given pipeline component name. Expects
 | ||
| the name of the component **factory**. The factory meta is an instance of the
 | ||
| [`FactoryMeta`](/api/language#factorymeta) dataclass and contains the
 | ||
| information about the component and its default provided by the
 | ||
| [`@Language.component`](/api/language#component) or
 | ||
| [`@Language.factory`](/api/language#factory) decorator.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > factory_meta = Language.get_factory_meta("ner")
 | ||
| > assert factory_meta.factory == "ner"
 | ||
| > print(factory_meta.default_config)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                       |
 | ||
| | ----------- | --------------------------------- |
 | ||
| | `name`      | The factory name. ~~str~~         |
 | ||
| | **RETURNS** | The factory meta. ~~FactoryMeta~~ |
 | ||
| 
 | ||
| ## Language.get_pipe_meta {#get_pipe_meta tag="method" new="3"}
 | ||
| 
 | ||
| Get the factory meta information for a given pipeline component name. Expects
 | ||
| the name of the component **instance** in the pipeline. The factory meta is an
 | ||
| instance of the [`FactoryMeta`](/api/language#factorymeta) dataclass and
 | ||
| contains the information about the component and its default provided by the
 | ||
| [`@Language.component`](/api/language#component) or
 | ||
| [`@Language.factory`](/api/language#factory) decorator.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.add_pipe("ner", name="entity_recognizer")
 | ||
| > factory_meta = nlp.get_pipe_meta("entity_recognizer")
 | ||
| > assert factory_meta.factory == "ner"
 | ||
| > print(factory_meta.default_config)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                          |
 | ||
| | ----------- | ------------------------------------ |
 | ||
| | `name`      | The pipeline component name. ~~str~~ |
 | ||
| | **RETURNS** | The factory meta. ~~FactoryMeta~~    |
 | ||
| 
 | ||
| ## Language.analyze_pipes {#analyze_pipes tag="method" new="3"}
 | ||
| 
 | ||
| Analyze the current pipeline components and show a summary of the attributes
 | ||
| they assign and require, and the scores they set. The data is based on the
 | ||
| information provided in the [`@Language.component`](/api/language#component) and
 | ||
| [`@Language.factory`](/api/language#factory) decorator. If requirements aren't
 | ||
| met, e.g. if a component specifies a required property that is not set by a
 | ||
| previous component, a warning is shown.
 | ||
| 
 | ||
| <Infobox variant="warning" title="Important note">
 | ||
| 
 | ||
| The pipeline analysis is static and does **not actually run the components**.
 | ||
| This means that it relies on the information provided by the components
 | ||
| themselves. If a custom component declares that it assigns an attribute but it
 | ||
| doesn't, the pipeline analysis won't catch that.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp = spacy.blank("en")
 | ||
| > nlp.add_pipe("tagger")
 | ||
| > nlp.add_pipe("entity_linker")
 | ||
| > analysis = nlp.analyze_pipes()
 | ||
| > ```
 | ||
| 
 | ||
| <Accordion title="Example output" spaced>
 | ||
| 
 | ||
| ```json
 | ||
| ### Structured
 | ||
| {
 | ||
|   "summary": {
 | ||
|     "tagger": {
 | ||
|       "assigns": ["token.tag"],
 | ||
|       "requires": [],
 | ||
|       "scores": ["tag_acc", "pos_acc", "lemma_acc"],
 | ||
|       "retokenizes": false
 | ||
|     },
 | ||
|     "entity_linker": {
 | ||
|       "assigns": ["token.ent_kb_id"],
 | ||
|       "requires": ["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
 | ||
|       "scores": [],
 | ||
|       "retokenizes": false
 | ||
|     }
 | ||
|   },
 | ||
|   "problems": {
 | ||
|     "tagger": [],
 | ||
|     "entity_linker": ["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"]
 | ||
|   },
 | ||
|   "attrs": {
 | ||
|     "token.ent_iob": { "assigns": [], "requires": ["entity_linker"] },
 | ||
|     "doc.ents": { "assigns": [], "requires": ["entity_linker"] },
 | ||
|     "token.ent_kb_id": { "assigns": ["entity_linker"], "requires": [] },
 | ||
|     "doc.sents": { "assigns": [], "requires": ["entity_linker"] },
 | ||
|     "token.tag": { "assigns": ["tagger"], "requires": [] },
 | ||
|     "token.ent_type": { "assigns": [], "requires": ["entity_linker"] }
 | ||
|   }
 | ||
| }
 | ||
| ```
 | ||
| 
 | ||
| ```
 | ||
| ### Pretty
 | ||
| ============================= Pipeline Overview =============================
 | ||
| 
 | ||
| #   Component       Assigns           Requires         Scores      Retokenizes
 | ||
| -   -------------   ---------------   --------------   ---------   -----------
 | ||
| 0   tagger          token.tag                          tag_acc     False
 | ||
|                                                        pos_acc
 | ||
|                                                        lemma_acc
 | ||
| 
 | ||
| 1   entity_linker   token.ent_kb_id   doc.ents                     False
 | ||
|                                       doc.sents
 | ||
|                                       token.ent_iob
 | ||
|                                       token.ent_type
 | ||
| 
 | ||
| 
 | ||
| ================================ Problems (4) ================================
 | ||
| ⚠ 'entity_linker' requirements not met: doc.ents, doc.sents,
 | ||
| token.ent_iob, token.ent_type
 | ||
| ```
 | ||
| 
 | ||
| </Accordion>
 | ||
| 
 | ||
| | Name           | Description                                                                                                                                                                                                                                 |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | _keyword-only_ |                                                                                                                                                                                                                                             |
 | ||
| | `keys`         | The values to display in the table. Corresponds to attributes of the [`FactoryMeta`](/api/language#factorymeta). Defaults to `["assigns", "requires", "scores", "retokenizes"]`. ~~List[str]~~                                              |
 | ||
| | `pretty`       | Pretty-print the results as a table. Defaults to `False`. ~~bool~~                                                                                                                                                                          |
 | ||
| | **RETURNS**    | Dictionary containing the pipe analysis, keyed by `"summary"` (component meta by pipe), `"problems"` (attribute names by pipe) and `"attrs"` (pipes that assign and require an attribute, keyed by attribute). ~~Optional[Dict[str, Any]]~~ |
 | ||
| 
 | ||
| ## Language.meta {#meta tag="property"}
 | ||
| 
 | ||
| Custom meta data for the Language class. If a trained pipeline is loaded, this
 | ||
| contains meta data of the pipeline. The `Language.meta` is also what's
 | ||
| serialized as the [`meta.json`](/api/data-formats#meta) when you save an `nlp`
 | ||
| object to disk.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > print(nlp.meta)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                       |
 | ||
| | ----------- | --------------------------------- |
 | ||
| | **RETURNS** | The meta data. ~~Dict[str, Any]~~ |
 | ||
| 
 | ||
| ## Language.config {#config tag="property" new="3"}
 | ||
| 
 | ||
| Export a trainable [`config.cfg`](/api/data-formats#config) for the current
 | ||
| `nlp` object. Includes the current pipeline, all configs used to create the
 | ||
| currently active pipeline components, as well as the default training config
 | ||
| that can be used with [`spacy train`](/api/cli#train). `Language.config` returns
 | ||
| a [Thinc `Config` object](https://thinc.ai/docs/api-config#config), which is a
 | ||
| subclass of the built-in `dict`. It supports the additional methods `to_disk`
 | ||
| (serialize the config to a file) and `to_str` (output the config as a string).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.config.to_disk("./config.cfg")
 | ||
| > print(nlp.config.to_str())
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description            |
 | ||
| | ----------- | ---------------------- |
 | ||
| | **RETURNS** | The config. ~~Config~~ |
 | ||
| 
 | ||
| ## Language.to_disk {#to_disk tag="method" new="2"}
 | ||
| 
 | ||
| Save the current state to a directory. Under the hood, this method delegates to
 | ||
| the `to_disk` methods of the individual pipeline components, if available. This
 | ||
| means that if a trained pipeline is loaded, all components and their weights
 | ||
| will be saved to disk.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.to_disk("/path/to/pipeline")
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                                                |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | ||
| | _keyword-only_ |                                                                                                                                            |
 | ||
| | `exclude`      | Names of pipeline components or [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                |
 | ||
| 
 | ||
| ## Language.from_disk {#from_disk tag="method" new="2"}
 | ||
| 
 | ||
| Loads state from a directory, including all data that was saved with the
 | ||
| `Language` object. Modifies the object in place and returns it.
 | ||
| 
 | ||
| <Infobox variant="warning" title="Important note">
 | ||
| 
 | ||
| Keep in mind that this method **only loads serialized state** and doesn't set up
 | ||
| the `nlp` object. This means that it requires the correct language class to be
 | ||
| initialized and all pipeline components to be added to the pipeline. If you want
 | ||
| to load a serialized pipeline from a directory, you should use
 | ||
| [`spacy.load`](/api/top-level#spacy.load), which will set everything up for you.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.language import Language
 | ||
| > nlp = Language().from_disk("/path/to/pipeline")
 | ||
| >
 | ||
| > # Using language-specific subclass
 | ||
| > from spacy.lang.en import English
 | ||
| > nlp = English().from_disk("/path/to/pipeline")
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                 |
 | ||
| | -------------- | ----------------------------------------------------------------------------------------------------------- |
 | ||
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~             |
 | ||
| | _keyword-only_ |                                                                                                             |
 | ||
| | `exclude`      | Names of pipeline components or [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | ||
| | **RETURNS**    | The modified `Language` object. ~~Language~~                                                                |
 | ||
| 
 | ||
| ## Language.to_bytes {#to_bytes tag="method"}
 | ||
| 
 | ||
| Serialize the current state to a binary string.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp_bytes = nlp.to_bytes()
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                            |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------ |
 | ||
| | _keyword-only_ |                                                                                                        |
 | ||
| | `exclude`      | Names of pipeline components or [serialization fields](#serialization-fields) to exclude. ~~iterable~~ |
 | ||
| | **RETURNS**    | The serialized form of the `Language` object. ~~bytes~~                                                |
 | ||
| 
 | ||
| ## Language.from_bytes {#from_bytes tag="method"}
 | ||
| 
 | ||
| Load state from a binary string. Note that this method is commonly used via the
 | ||
| subclasses like `English` or `German` to make language-specific functionality
 | ||
| like the [lexical attribute getters](/usage/adding-languages#lex-attrs)
 | ||
| available to the loaded object.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.lang.en import English
 | ||
| > nlp_bytes = nlp.to_bytes()
 | ||
| > nlp2 = English()
 | ||
| > nlp2.from_bytes(nlp_bytes)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                 |
 | ||
| | -------------- | ----------------------------------------------------------------------------------------------------------- |
 | ||
| | `bytes_data`   | The data to load from. ~~bytes~~                                                                            |
 | ||
| | _keyword-only_ |                                                                                                             |
 | ||
| | `exclude`      | Names of pipeline components or [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | ||
| | **RETURNS**    | The `Language` object. ~~Language~~                                                                         |
 | ||
| 
 | ||
| ## Attributes {#attributes}
 | ||
| 
 | ||
| | Name                                          | Description                                                                                                                                    |
 | ||
| | --------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `vocab`                                       | A container for the lexical types. ~~Vocab~~                                                                                                   |
 | ||
| | `tokenizer`                                   | The tokenizer. ~~Tokenizer~~                                                                                                                   |
 | ||
| | `make_doc`                                    | Callable that takes a string and returns a `Doc`. ~~Callable[[str], Doc]~~                                                                     |
 | ||
| | `pipeline`                                    | List of `(name, component)` tuples describing the current processing pipeline, in order. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~            |
 | ||
| | `pipe_names` <Tag variant="new">2</Tag>       | List of pipeline component names, in order. ~~List[str]~~                                                                                      |
 | ||
| | `pipe_labels` <Tag variant="new">2.2</Tag>    | List of labels set by the pipeline components, if available, keyed by component name. ~~Dict[str, List[str]]~~                                 |
 | ||
| | `pipe_factories` <Tag variant="new">2.2</Tag> | Dictionary of pipeline component names, mapped to their factory names. ~~Dict[str, str]~~                                                      |
 | ||
| | `factories`                                   | All available factory functions, keyed by name. ~~Dict[str, Callable[[...], Callable[[Doc], Doc]]]~~                                           |
 | ||
| | `factory_names` <Tag variant="new">3</Tag>    | List of all available factory names. ~~List[str]~~                                                                                             |
 | ||
| | `components` <Tag variant="new">3</Tag>       | List of all available `(name, component)` tuples, including components that are currently disabled. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ |
 | ||
| | `component_names` <Tag variant="new">3</Tag>  | List of all available component names, including components that are currently disabled. ~~List[str]~~                                         |
 | ||
| | `disabled` <Tag variant="new">3</Tag>         | Names of components that are currently disabled and don't run as part of the pipeline. ~~List[str]~~                                           |
 | ||
| | `path` <Tag variant="new">2</Tag>             | Path to the pipeline data directory, if a pipeline is loaded from a path or package. Otherwise `None`. ~~Optional[Path]~~                      |
 | ||
| 
 | ||
| ## Class attributes {#class-attributes}
 | ||
| 
 | ||
| | Name             | Description                                                                                                                                                                                                        |
 | ||
| | ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `Defaults`       | Settings, data and factory methods for creating the `nlp` object and processing pipeline. ~~Defaults~~                                                                                                             |
 | ||
| | `lang`           | Two-letter language ID, i.e. [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). ~~str~~                                                                                                            |
 | ||
| | `default_config` | Base [config](/usage/training#config) to use for [Language.config](/api/language#config). Defaults to [`default_config.cfg`](https://github.com/explosion/spaCy/tree/develop/spacy/default_config.cfg). ~~Config~~ |
 | ||
| 
 | ||
| ## Defaults {#defaults}
 | ||
| 
 | ||
| The following attributes can be set on the `Language.Defaults` class to
 | ||
| customize the default language data:
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.language import language
 | ||
| > from spacy.lang.tokenizer_exceptions import URL_MATCH
 | ||
| > from thinc.api import Config
 | ||
| >
 | ||
| > DEFAULT_CONFIFG = """
 | ||
| > [nlp.tokenizer]
 | ||
| > @tokenizers = "MyCustomTokenizer.v1"
 | ||
| > """
 | ||
| >
 | ||
| > class Defaults(Language.Defaults):
 | ||
| >    stop_words = set()
 | ||
| >    tokenizer_exceptions = {}
 | ||
| >    prefixes = tuple()
 | ||
| >    suffixes = tuple()
 | ||
| >    infixes = tuple()
 | ||
| >    token_match = None
 | ||
| >    url_match = URL_MATCH
 | ||
| >    lex_attr_getters = {}
 | ||
| >    syntax_iterators = {}
 | ||
| >    writing_system = {"direction": "ltr", "has_case": True, "has_letters": True}
 | ||
| >    config = Config().from_str(DEFAULT_CONFIG)
 | ||
| > ```
 | ||
| 
 | ||
| | Name                              | Description                                                                                                                                                                                                                                                                         |
 | ||
| | --------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `stop_words`                      | List of stop words, used for `Token.is_stop`.<br />**Example:** [`stop_words.py`][stop_words.py] ~~Set[str]~~                                                                                                                                                                       |
 | ||
| | `tokenizer_exceptions`            | Tokenizer exception rules, string mapped to list of token attributes.<br />**Example:** [`de/tokenizer_exceptions.py`][de/tokenizer_exceptions.py] ~~Dict[str, List[dict]]~~                                                                                                        |
 | ||
| | `prefixes`, `suffixes`, `infixes` | Prefix, suffix and infix rules for the default tokenizer.<br />**Example:** [`puncutation.py`][punctuation.py] ~~Optional[List[Union[str, Pattern]]]~~                                                                                                                              |
 | ||
| | `token_match`                     | Optional regex for matching strings that should never be split, overriding the infix rules.<br />**Example:** [`fr/tokenizer_exceptions.py`][fr/tokenizer_exceptions.py] ~~Optional[Pattern]~~                                                                                      |
 | ||
| | `url_match`                       | Regular expression for matching URLs. Prefixes and suffixes are removed before applying the match.<br />**Example:** [`tokenizer_exceptions.py`][tokenizer_exceptions.py] ~~Optional[Pattern]~~                                                                                     |
 | ||
| | `lex_attr_getters`                | Custom functions for setting lexical attributes on tokens, e.g. `like_num`.<br />**Example:** [`lex_attrs.py`][lex_attrs.py] ~~Dict[int, Callable[[str], Any]]~~                                                                                                                    |
 | ||
| | `syntax_iterators`                | Functions that compute views of a `Doc` object based on its syntax. At the moment, only used for [noun chunks](/usage/linguistic-features#noun-chunks).<br />**Example:** [`syntax_iterators.py`][syntax_iterators.py]. ~~Dict[str, Callable[[Union[Doc, Span]], Iterator[Span]]]~~ |
 | ||
| | `writing_system`                  | Information about the language's writing system, available via `Vocab.writing_system`. Defaults to: `{"direction": "ltr", "has_case": True, "has_letters": True}.`.<br />**Example:** [`zh/__init__.py`][zh/__init__.py] ~~Dict[str, Any]~~                                         |
 | ||
| | `config`                          | Default [config](/usage/training#config) added to `nlp.config`. This can include references to custom tokenizers or lemmatizers.<br />**Example:** [`zh/__init__.py`][zh/__init__.py] ~~Config~~                                                                                    |
 | ||
| 
 | ||
| [stop_words.py]:
 | ||
|   https://github.com/explosion/spaCy/tree/master/spacy/lang/en/stop_words.py
 | ||
| [tokenizer_exceptions.py]:
 | ||
|   https://github.com/explosion/spaCy/tree/master/spacy/lang/tokenizer_exceptions.py
 | ||
| [de/tokenizer_exceptions.py]:
 | ||
|   https://github.com/explosion/spaCy/tree/master/spacy/lang/de/tokenizer_exceptions.py
 | ||
| [fr/tokenizer_exceptions.py]:
 | ||
|   https://github.com/explosion/spaCy/tree/master/spacy/lang/fr/tokenizer_exceptions.py
 | ||
| [punctuation.py]:
 | ||
|   https://github.com/explosion/spaCy/tree/master/spacy/lang/punctuation.py
 | ||
| [lex_attrs.py]:
 | ||
|   https://github.com/explosion/spaCy/tree/master/spacy/lang/en/lex_attrs.py
 | ||
| [syntax_iterators.py]:
 | ||
|   https://github.com/explosion/spaCy/tree/master/spacy/lang/en/syntax_iterators.py
 | ||
| [zh/__init__.py]:
 | ||
|   https://github.com/explosion/spaCy/tree/master/spacy/lang/zh/__init__.py
 | ||
| 
 | ||
| ## Serialization fields {#serialization-fields}
 | ||
| 
 | ||
| During serialization, spaCy will export several data fields used to restore
 | ||
| different aspects of the object. If needed, you can exclude them from
 | ||
| serialization by passing in the string names via the `exclude` argument.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > data = nlp.to_bytes(exclude=["tokenizer", "vocab"])
 | ||
| > nlp.from_disk("/pipeline", exclude=["ner"])
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                        |
 | ||
| | ----------- | ------------------------------------------------------------------ |
 | ||
| | `vocab`     | The shared [`Vocab`](/api/vocab).                                  |
 | ||
| | `tokenizer` | Tokenization rules and exceptions.                                 |
 | ||
| | `meta`      | The meta data, available as [`Language.meta`](/api/language#meta). |
 | ||
| | ...         | String names of pipeline components, e.g. `"ner"`.                 |
 | ||
| 
 | ||
| ## FactoryMeta {#factorymeta new="3" tag="dataclass"}
 | ||
| 
 | ||
| The `FactoryMeta` contains the information about the component and its default
 | ||
| provided by the [`@Language.component`](/api/language#component) or
 | ||
| [`@Language.factory`](/api/language#factory) decorator. It's created whenever a
 | ||
| component is defined and stored on the `Language` class for each component
 | ||
| instance and factory instance.
 | ||
| 
 | ||
| | Name                    | Description                                                                                                                                                                                                                                      |
 | ||
| | ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `factory`               | The name of the registered component factory. ~~str~~                                                                                                                                                                                            |
 | ||
| | `default_config`        | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~                                                                                                                                                   |
 | ||
| | `assigns`               | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~                                                                               |
 | ||
| | `requires`              | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~                                                                               |
 | ||
| | `retokenizes`           | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~                                                                                                                             |
 | ||
| | `scores`                | All scores set by the components if it's trainable, e.g. `["ents_f", "ents_r", "ents_p"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~                                                                     |
 | ||
| | `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. ~~Dict[str, float]~~ |
 |