mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			401 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			401 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: Pipe
 | ||
| tag: class
 | ||
| teaser: Base class for trainable pipeline components
 | ||
| ---
 | ||
| 
 | ||
| This class is a base class and **not instantiated directly**. Trainable pipeline
 | ||
| components like the [`EntityRecognizer`](/api/entityrecognizer) or
 | ||
| [`TextCategorizer`](/api/textcategorizer) inherit from it and it defines the
 | ||
| interface that components should follow to function as trainable components in a
 | ||
| spaCy pipeline. See the docs on
 | ||
| [writing trainable components](/usage/processing-pipelines#trainable-components)
 | ||
| for how to use the `Pipe` base class to implement custom components.
 | ||
| 
 | ||
| > #### Why is Pipe implemented in Cython?
 | ||
| >
 | ||
| > The `Pipe` class is implemented in a `.pyx` module, the extension used by
 | ||
| > [Cython](/api/cython). This is needed so that **other** Cython classes, like
 | ||
| > the [`EntityRecognizer`](/api/entityrecognizer) can inherit from it. But it
 | ||
| > doesn't mean you have to implement trainable components in Cython – pure
 | ||
| > Python components like the [`TextCategorizer`](/api/textcategorizer) can also
 | ||
| > inherit from `Pipe`.
 | ||
| 
 | ||
| ```python
 | ||
| https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/pipe.pyx
 | ||
| ```
 | ||
| 
 | ||
| ## Pipe.\_\_init\_\_ {#init tag="method"}
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.pipeline import Pipe
 | ||
| > from spacy.language import Language
 | ||
| >
 | ||
| > class CustomPipe(Pipe):
 | ||
| >     ...
 | ||
| >
 | ||
| > @Language.factory("your_custom_pipe", default_config={"model": MODEL})
 | ||
| > def make_custom_pipe(nlp, name, model):
 | ||
| >     return CustomPipe(nlp.vocab, model, name)
 | ||
| > ```
 | ||
| 
 | ||
| Create a new pipeline instance. In your application, you would normally use a
 | ||
| shortcut for this and instantiate the component using its string name and
 | ||
| [`nlp.add_pipe`](/api/language#create_pipe).
 | ||
| 
 | ||
| | Name    | Description                                                                                                                     |
 | ||
| | ------- | ------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `vocab` | The shared vocabulary. ~~Vocab~~                                                                                                |
 | ||
| | `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], Any]~~                 |
 | ||
| | `name`  | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                             |
 | ||
| | `**cfg` | Additional config parameters and settings. Will be available as the dictionary `Pipe.cfg` and is serialized with the component. |
 | ||
| 
 | ||
| ## Pipe.\_\_call\_\_ {#call tag="method"}
 | ||
| 
 | ||
| Apply the pipe to one document. The document is modified in place, and returned.
 | ||
| This usually happens under the hood when the `nlp` object is called on a text
 | ||
| and all pipeline components are applied to the `Doc` in order. Both
 | ||
| [`__call__`](/api/pipe#call) and [`pipe`](/api/pipe#pipe) delegate to the
 | ||
| [`predict`](/api/pipe#predict) and
 | ||
| [`set_annotations`](/api/pipe#set_annotations) methods.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > doc = nlp("This is a sentence.")
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > # This usually happens under the hood
 | ||
| > processed = pipe(doc)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                      |
 | ||
| | ----------- | -------------------------------- |
 | ||
| | `doc`       | The document to process. ~~Doc~~ |
 | ||
| | **RETURNS** | The processed document. ~~Doc~~  |
 | ||
| 
 | ||
| ## Pipe.pipe {#pipe tag="method"}
 | ||
| 
 | ||
| Apply the pipe to a stream of documents. This usually happens under the hood
 | ||
| when the `nlp` object is called on a text and all pipeline components are
 | ||
| applied to the `Doc` in order. Both [`__call__`](/api/pipe#call) and
 | ||
| [`pipe`](/api/pipe#pipe) delegate to the [`predict`](/api/pipe#predict) and
 | ||
| [`set_annotations`](/api/pipe#set_annotations) methods.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > for doc in pipe.pipe(docs, batch_size=50):
 | ||
| >     pass
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                   |
 | ||
| | -------------- | ------------------------------------------------------------- |
 | ||
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | ||
| | _keyword-only_ |                                                               |
 | ||
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | ||
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | ||
| 
 | ||
| ## Pipe.begin_training {#begin_training tag="method"}
 | ||
| 
 | ||
| Initialize the component for training and return an
 | ||
| [`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
 | ||
| function that returns an iterable of [`Example`](/api/example) objects. The data
 | ||
| examples are used to **initialize the model** of the component and can either be
 | ||
| the full training data or a representative sample. Initialization includes
 | ||
| validating the network,
 | ||
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | ||
| setting up the label scheme based on the data.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > optimizer = pipe.begin_training(lambda: [], pipeline=nlp.pipeline)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                                           |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
 | ||
| | _keyword-only_ |                                                                                                                                       |
 | ||
| | `pipeline`     | Optional list of pipeline components that this component is part of. ~~Optional[List[Tuple[str, Callable[[Doc], Doc]]]]~~             |
 | ||
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~                         |
 | ||
| | **RETURNS**    | The optimizer. ~~Optimizer~~                                                                                                          |
 | ||
| 
 | ||
| ## Pipe.predict {#predict tag="method"}
 | ||
| 
 | ||
| Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
 | ||
| modifying them.
 | ||
| 
 | ||
| <Infobox variant="danger">
 | ||
| 
 | ||
| This method needs to be overwritten with your own custom `predict` method.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > scores = pipe.predict([doc1, doc2])
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                 |
 | ||
| | ----------- | ------------------------------------------- |
 | ||
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | ||
| | **RETURNS** | The model's prediction for each document.   |
 | ||
| 
 | ||
| ## Pipe.set_annotations {#set_annotations tag="method"}
 | ||
| 
 | ||
| Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
 | ||
| 
 | ||
| <Infobox variant="danger">
 | ||
| 
 | ||
| This method needs to be overwritten with your own custom `set_annotations`
 | ||
| method.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > scores = pipe.predict(docs)
 | ||
| > pipe.set_annotations(docs, scores)
 | ||
| > ```
 | ||
| 
 | ||
| | Name     | Description                                      |
 | ||
| | -------- | ------------------------------------------------ |
 | ||
| | `docs`   | The documents to modify. ~~Iterable[Doc]~~       |
 | ||
| | `scores` | The scores to set, produced by `Tagger.predict`. |
 | ||
| 
 | ||
| ## Pipe.update {#update tag="method"}
 | ||
| 
 | ||
| Learn from a batch of [`Example`](/api/example) objects containing the
 | ||
| predictions and gold-standard annotations, and update the component's model.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > optimizer = nlp.begin_training()
 | ||
| > losses = pipe.update(examples, sgd=optimizer)
 | ||
| > ```
 | ||
| 
 | ||
| | Name              | Description                                                                                                                        |
 | ||
| | ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `examples`        | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                                  |
 | ||
| | _keyword-only_    |                                                                                                                                    |  |
 | ||
| | `drop`            | The dropout rate. ~~float~~                                                                                                        |
 | ||
| | `set_annotations` | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](#set_annotations). ~~bool~~ |
 | ||
| | `sgd`             | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~                      |
 | ||
| | `losses`          | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~           |
 | ||
| | **RETURNS**       | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                              |
 | ||
| 
 | ||
| ## Pipe.rehearse {#rehearse tag="method,experimental" new="3"}
 | ||
| 
 | ||
| Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
 | ||
| current model to make predictions similar to an initial model, to try to address
 | ||
| the "catastrophic forgetting" problem. This feature is experimental.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > optimizer = nlp.resume_training()
 | ||
| > losses = pipe.rehearse(examples, sgd=optimizer)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                              |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | ||
| | _keyword-only_ |                                                                                                                          |  |
 | ||
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | ||
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | ||
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | ||
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | ||
| 
 | ||
| ## Pipe.get_loss {#get_loss tag="method"}
 | ||
| 
 | ||
| Find the loss and gradient of loss for the batch of documents and their
 | ||
| predicted scores.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > ner = nlp.add_pipe("ner")
 | ||
| > scores = ner.predict([eg.predicted for eg in examples])
 | ||
| > loss, d_loss = ner.get_loss(examples, scores)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                                 |
 | ||
| | ----------- | --------------------------------------------------------------------------- |
 | ||
| | `examples`  | The batch of examples. ~~Iterable[Example]~~                                |
 | ||
| | `scores`    | Scores representing the model's predictions.                                |
 | ||
| | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
 | ||
| 
 | ||
| ## Pipe.score {#score tag="method" new="3"}
 | ||
| 
 | ||
| Score a batch of examples.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > scores = pipe.score(examples)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                                                             |
 | ||
| | ----------- | ------------------------------------------------------------------------------------------------------- |
 | ||
| | `examples`  | The examples to score. ~~Iterable[Example]~~                                                            |
 | ||
| | **RETURNS** | The scores, e.g. produced by the [`Scorer`](/api/scorer). ~~Dict[str, Union[float, Dict[str, float]]]~~ |
 | ||
| 
 | ||
| ## Pipe.create_optimizer {#create_optimizer tag="method"}
 | ||
| 
 | ||
| Create an optimizer for the pipeline component. Defaults to
 | ||
| [`Adam`](https://thinc.ai/docs/api-optimizers#adam) with default settings.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > optimizer = pipe.create_optimizer()
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                  |
 | ||
| | ----------- | ---------------------------- |
 | ||
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | ||
| 
 | ||
| ## Pipe.use_params {#use_params tag="method, contextmanager"}
 | ||
| 
 | ||
| Modify the pipe's model, to use the given parameter values. At the end of the
 | ||
| context, the original parameters are restored.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > with pipe.use_params(optimizer.averages):
 | ||
| >     pipe.to_disk("/best_model")
 | ||
| > ```
 | ||
| 
 | ||
| | Name     | Description                                        |
 | ||
| | -------- | -------------------------------------------------- |
 | ||
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | ||
| 
 | ||
| ## Pipe.add_label {#add_label tag="method"}
 | ||
| 
 | ||
| Add a new label to the pipe. It's possible to extend trained models with new
 | ||
| labels, but care should be taken to avoid the "catastrophic forgetting" problem.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > pipe.add_label("MY_LABEL")
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                 |
 | ||
| | ----------- | ----------------------------------------------------------- |
 | ||
| | `label`     | The label to add. ~~str~~                                   |
 | ||
| | **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | ||
| 
 | ||
| ## Pipe.to_disk {#to_disk tag="method"}
 | ||
| 
 | ||
| Serialize the pipe to disk.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > pipe.to_disk("/path/to/pipe")
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                                                |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | ||
| | _keyword-only_ |                                                                                                                                            |
 | ||
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | ||
| 
 | ||
| ## Pipe.from_disk {#from_disk tag="method"}
 | ||
| 
 | ||
| Load the pipe from disk. Modifies the object in place and returns it.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > pipe.from_disk("/path/to/pipe")
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                     |
 | ||
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | ||
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | ||
| | _keyword-only_ |                                                                                                 |
 | ||
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | ||
| | **RETURNS**    | The modified pipe. ~~Pipe~~                                                                     |
 | ||
| 
 | ||
| ## Pipe.to_bytes {#to_bytes tag="method"}
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > pipe_bytes = pipe.to_bytes()
 | ||
| > ```
 | ||
| 
 | ||
| Serialize the pipe to a bytestring.
 | ||
| 
 | ||
| | Name           | Description                                                                                 |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------- |
 | ||
| | _keyword-only_ |                                                                                             |
 | ||
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | ||
| | **RETURNS**    | The serialized form of the pipe. ~~bytes~~                                                  |
 | ||
| 
 | ||
| ## Pipe.from_bytes {#from_bytes tag="method"}
 | ||
| 
 | ||
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > pipe_bytes = pipe.to_bytes()
 | ||
| > pipe = nlp.add_pipe("your_custom_pipe")
 | ||
| > pipe.from_bytes(pipe_bytes)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                 |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------- |
 | ||
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | ||
| | _keyword-only_ |                                                                                             |
 | ||
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | ||
| | **RETURNS**    | The pipe. ~~Pipe~~                                                                          |
 | ||
| 
 | ||
| ## Attributes {#attributes}
 | ||
| 
 | ||
| | Name    | Description                                                                                                              |
 | ||
| | ------- | ------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `vocab` | The shared vocabulary that's passed in on initialization. ~~Vocab~~                                                      |
 | ||
| | `model` | The model powering the component. ~~Model[List[Doc], Any]~~                                                              |
 | ||
| | `name`  | The name of the component instance in the pipeline. Can be used in the losses. ~~str~~                                   |
 | ||
| | `cfg`   | Keyword arguments passed to [`Pipe.__init__`](/api/pipe#init). Will be serialized with the component. ~~Dict[str, Any]~~ |
 | ||
| 
 | ||
| ## Serialization fields {#serialization-fields}
 | ||
| 
 | ||
| During serialization, spaCy will export several data fields used to restore
 | ||
| different aspects of the object. If needed, you can exclude them from
 | ||
| serialization by passing in the string names via the `exclude` argument.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > data = pipe.to_disk("/path", exclude=["vocab"])
 | ||
| > ```
 | ||
| 
 | ||
| | Name    | Description                                                    |
 | ||
| | ------- | -------------------------------------------------------------- |
 | ||
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | ||
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | ||
| | `model` | The binary model data. You usually don't want to exclude this. |
 |