mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 08:14:15 +03:00
d5110ffbf2
* Update website models for v2.3.0 * Add docs for Chinese word segmentation * Tighten up Chinese docs section * Merge branch 'master' into docs/v2.3.0 [ci skip] * Merge branch 'master' into docs/v2.3.0 [ci skip] * Auto-format and update version * Update matcher.md * Update languages and sorting * Typo in landing page * Infobox about token_match behavior * Add meta and basic docs for Japanese * POS -> TAG in models table * Add info about lookups for normalization * Updates to API docs for v2.3 * Update adding norm exceptions for adding languages * Add --omit-extra-lookups to CLI API docs * Add initial draft of "What's New in v2.3" * Add new in v2.3 tags to Chinese and Japanese sections * Add tokenizer to migration section * Add new in v2.3 flags to init-model * Typo * More what's new in v2.3 Co-authored-by: Ines Montani <ines@ines.io>
137 lines
6.1 KiB
Markdown
137 lines
6.1 KiB
Markdown
---
|
||
title: Sentencizer
|
||
tag: class
|
||
source: spacy/pipeline/pipes.pyx
|
||
---
|
||
|
||
A simple pipeline component, to allow custom sentence boundary detection logic
|
||
that doesn't require the dependency parse. By default, sentence segmentation is
|
||
performed by the [`DependencyParser`](/api/dependencyparser), so the
|
||
`Sentencizer` lets you implement a simpler, rule-based strategy that doesn't
|
||
require a statistical model to be loaded. The component is also available via
|
||
the string name `"sentencizer"`. After initialization, it is typically added to
|
||
the processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
|
||
|
||
<Infobox title="Important note" variant="warning">
|
||
|
||
Compared to the previous `SentenceSegmenter` class, the `Sentencizer` component
|
||
doesn't add a hook to `doc.user_hooks["sents"]`. Instead, it iterates over the
|
||
tokens in the `Doc` and sets the `Token.is_sent_start` property. The
|
||
`SentenceSegmenter` is still available if you import it directly:
|
||
|
||
```python
|
||
from spacy.pipeline import SentenceSegmenter
|
||
```
|
||
|
||
</Infobox>
|
||
|
||
## Sentencizer.\_\_init\_\_ {#init tag="method"}
|
||
|
||
Initialize the sentencizer.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> # Construction via create_pipe
|
||
> sentencizer = nlp.create_pipe("sentencizer")
|
||
>
|
||
> # Construction from class
|
||
> from spacy.pipeline import Sentencizer
|
||
> sentencizer = Sentencizer()
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------------- | ------------- | ------------------------------------------------------------------------------------------------------ |
|
||
| `punct_chars` | list | Optional custom list of punctuation characters that mark sentence ends. Defaults to `['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹', '।', '॥', '၊', '။', '።', '፧', '፨', '᙮', '᜵', '᜶', '᠃', '᠉', '᥄', '᥅', '᪨', '᪩', '᪪', '᪫', '᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿', '‼', '‽', '⁇', '⁈', '⁉', '⸮', '⸼', '꓿', '꘎', '꘏', '꛳', '꛷', '꡶', '꡷', '꣎', '꣏', '꤯', '꧈', '꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒', '﹖', '﹗', '!', '.', '?', '𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀', '𑃁', '𑅁', '𑅂', '𑅃', '𑇅', '𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼', '𑊩', '𑑋', '𑑌', '𑗂', '𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐', '𑗑', '𑗒', '𑗓', '𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂', '𑩃', '𑪛', '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。']`. |
|
||
| **RETURNS** | `Sentencizer` | The newly constructed object. |
|
||
|
||
## Sentencizer.\_\_call\_\_ {#call tag="method"}
|
||
|
||
Apply the sentencizer on a `Doc`. Typically, this happens automatically after
|
||
the component has been added to the pipeline using
|
||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.lang.en import English
|
||
>
|
||
> nlp = English()
|
||
> sentencizer = nlp.create_pipe("sentencizer")
|
||
> nlp.add_pipe(sentencizer)
|
||
> doc = nlp("This is a sentence. This is another sentence.")
|
||
> assert len(list(doc.sents)) == 2
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | ------------------------------------------------------------ |
|
||
| `doc` | `Doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. |
|
||
| **RETURNS** | `Doc` | The modified `Doc` with added sentence boundaries. |
|
||
|
||
## Sentencizer.to_disk {#to_disk tag="method"}
|
||
|
||
Save the sentencizer settings (punctuation characters) a directory. Will create
|
||
a file `sentencizer.json`. This also happens automatically when you save an
|
||
`nlp` object with a sentencizer added to its pipeline.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> sentencizer = Sentencizer(punct_chars=[".", "?", "!", "。"])
|
||
> sentencizer.to_disk("/path/to/sentencizer.jsonl")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------ | ---------------- | ---------------------------------------------------------------------------------------------------------------- |
|
||
| `path` | unicode / `Path` | A path to a file, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||
|
||
## Sentencizer.from_disk {#from_disk tag="method"}
|
||
|
||
Load the sentencizer settings from a file. Expects a JSON file. This also
|
||
happens automatically when you load an `nlp` object or model with a sentencizer
|
||
added to its pipeline.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> sentencizer = Sentencizer()
|
||
> sentencizer.from_disk("/path/to/sentencizer.json")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---------------- | -------------------------------------------------------------------------- |
|
||
| `path` | unicode / `Path` | A path to a JSON file. Paths may be either strings or `Path`-like objects. |
|
||
| **RETURNS** | `Sentencizer` | The modified `Sentencizer` object. |
|
||
|
||
## Sentencizer.to_bytes {#to_bytes tag="method"}
|
||
|
||
Serialize the sentencizer settings to a bytestring.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> sentencizer = Sentencizer(punct_chars=[".", "?", "!", "。"])
|
||
> sentencizer_bytes = sentencizer.to_bytes()
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | -------------------- |
|
||
| **RETURNS** | bytes | The serialized data. |
|
||
|
||
## Sentencizer.from_bytes {#from_bytes tag="method"}
|
||
|
||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> sentencizer_bytes = sentencizer.to_bytes()
|
||
> sentencizer = Sentencizer()
|
||
> sentencizer.from_bytes(sentencizer_bytes)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------------ | ------------- | ---------------------------------- |
|
||
| `bytes_data` | bytes | The bytestring to load. |
|
||
| **RETURNS** | `Sentencizer` | The modified `Sentencizer` object. |
|