mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-16 06:37:04 +03:00
353 lines
18 KiB
Markdown
353 lines
18 KiB
Markdown
---
|
|
title: TextCategorizer
|
|
tag: class
|
|
source: spacy/pipeline/pipes.pyx
|
|
new: 2
|
|
---
|
|
|
|
This class is a subclass of `Pipe` and follows the same API. The pipeline
|
|
component is available in the [processing pipeline](/usage/processing-pipelines)
|
|
via the ID `"textcat"`.
|
|
|
|
## TextCategorizer.Model {#model tag="classmethod"}
|
|
|
|
Initialize a model for the pipe. The model should implement the
|
|
`thinc.neural.Model` API. Wrappers are under development for most major machine
|
|
learning libraries.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------ | ------------------------------------- |
|
|
| `**kwargs` | - | Parameters for initializing the model |
|
|
| **RETURNS** | object | The initialized model. |
|
|
|
|
## TextCategorizer.\_\_init\_\_ {#init tag="method"}
|
|
|
|
Create a new pipeline instance. In your application, you would normally use a
|
|
shortcut for this and instantiate the component using its string name and
|
|
[`nlp.create_pipe`](/api/language#create_pipe).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction via create_pipe
|
|
> textcat = nlp.create_pipe("textcat")
|
|
> textcat = nlp.create_pipe("textcat", config={"exclusive_classes": True})
|
|
>
|
|
> # Construction from class
|
|
> from spacy.pipeline import TextCategorizer
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> textcat.from_disk("/path/to/model")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------------- | ----------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | `Vocab` | The shared vocabulary. |
|
|
| `model` | `thinc.neural.Model` / `True` | The model powering the pipeline component. If no model is supplied, the model is created when you call `begin_training`, `from_disk` or `from_bytes`. |
|
|
| `exclusive_classes` | bool | Make categories mutually exclusive. Defaults to `False`. |
|
|
| `architecture` | unicode | Model architecture to use, see [architectures](#architectures) for details. Defaults to `"ensemble"`. |
|
|
| **RETURNS** | `TextCategorizer` | The newly constructed object. |
|
|
|
|
### Architectures {#architectures new="2.1"}
|
|
|
|
Text classification models can be used to solve a wide variety of problems.
|
|
Differences in text length, number of labels, difficulty, and runtime
|
|
performance constraints mean that no single algorithm performs well on all types
|
|
of problems. To handle a wider variety of problems, the `TextCategorizer` object
|
|
allows configuration of its model architecture, using the `architecture` keyword
|
|
argument.
|
|
|
|
| Name | Description |
|
|
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `"ensemble"` | **Default:** Stacked ensemble of a bag-of-words model and a neural network model. The neural network uses a CNN with mean pooling and attention. The "ngram_size" and "attr" arguments can be used to configure the feature extraction for the bag-of-words model. |
|
|
| `"simple_cnn"` | A neural network model where token vectors are calculated using a CNN. The vectors are mean pooled and used as features in a feed-forward network. This architecture is usually less accurate than the ensemble, but runs faster. |
|
|
| `"bow"` | An ngram "bag-of-words" model. This architecture should run much faster than the others, but may not be as accurate, especially if texts are short. The features extracted can be controlled using the keyword arguments `ngram_size` and `attr`. For instance, `ngram_size=3` and `attr="lower"` would give lower-cased unigram, trigram and bigram features. 2, 3 or 4 are usually good choices of ngram size. |
|
|
|
|
## TextCategorizer.\_\_call\_\_ {#call tag="method"}
|
|
|
|
Apply the pipe to one document. The document is modified in place, and returned.
|
|
This usually happens under the hood when the `nlp` object is called on a text
|
|
and all pipeline components are applied to the `Doc` in order. Both
|
|
[`__call__`](/api/textcategorizer#call) and [`pipe`](/api/textcategorizer#pipe)
|
|
delegate to the [`predict`](/api/textcategorizer#predict) and
|
|
[`set_annotations`](/api/textcategorizer#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> doc = nlp("This is a sentence.")
|
|
> # This usually happens under the hood
|
|
> processed = textcat(doc)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ------------------------ |
|
|
| `doc` | `Doc` | The document to process. |
|
|
| **RETURNS** | `Doc` | The processed document. |
|
|
|
|
## TextCategorizer.pipe {#pipe tag="method"}
|
|
|
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
|
when the `nlp` object is called on a text and all pipeline components are
|
|
applied to the `Doc` in order. Both [`__call__`](/api/textcategorizer#call) and
|
|
[`pipe`](/api/textcategorizer#pipe) delegate to the
|
|
[`predict`](/api/textcategorizer#predict) and
|
|
[`set_annotations`](/api/textcategorizer#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> for doc in textcat.pipe(docs, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------ | -------- | ------------------------------------------------------ |
|
|
| `stream` | iterable | A stream of documents. |
|
|
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
|
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
|
|
|
## TextCategorizer.predict {#predict tag="method"}
|
|
|
|
Apply the pipeline's model to a batch of docs, without modifying them.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> scores, tensors = textcat.predict([doc1, doc2])
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | -------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `docs` | iterable | The documents to predict. |
|
|
| **RETURNS** | tuple | A `(scores, tensors)` tuple where `scores` is the model's prediction for each document and `tensors` is the token representations used to predict the scores. Each tensor is an array with one row for each token in the document. |
|
|
|
|
## TextCategorizer.set_annotations {#set_annotations tag="method"}
|
|
|
|
Modify a batch of documents, using pre-computed scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> scores, tensors = textcat.predict([doc1, doc2])
|
|
> textcat.set_annotations([doc1, doc2], scores, tensors)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| --------- | -------- | --------------------------------------------------------- |
|
|
| `docs` | iterable | The documents to modify. |
|
|
| `scores` | - | The scores to set, produced by `TextCategorizer.predict`. |
|
|
| `tensors` | iterable | The token representations used to predict the scores. |
|
|
|
|
## TextCategorizer.update {#update tag="method"}
|
|
|
|
Learn from a batch of documents and gold-standard information, updating the
|
|
pipe's model. Delegates to [`predict`](/api/textcategorizer#predict) and
|
|
[`get_loss`](/api/textcategorizer#get_loss).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> losses = {}
|
|
> optimizer = nlp.begin_training()
|
|
> textcat.update([doc1, doc2], [gold1, gold2], losses=losses, sgd=optimizer)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------- | -------- | -------------------------------------------------------------------------------------------- |
|
|
| `docs` | iterable | A batch of documents to learn from. |
|
|
| `golds` | iterable | The gold-standard data. Must have the same length as `docs`. |
|
|
| `drop` | float | The dropout rate. |
|
|
| `sgd` | callable | The optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. |
|
|
| `losses` | dict | Optional record of the loss during training. The value keyed by the model's name is updated. |
|
|
|
|
## TextCategorizer.get_loss {#get_loss tag="method"}
|
|
|
|
Find the loss and gradient of loss for the batch of documents and their
|
|
predicted scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> scores = textcat.predict([doc1, doc2])
|
|
> loss, d_loss = textcat.get_loss([doc1, doc2], [gold1, gold2], scores)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | -------- | ------------------------------------------------------------ |
|
|
| `docs` | iterable | The batch of documents. |
|
|
| `golds` | iterable | The gold-standard data. Must have the same length as `docs`. |
|
|
| `scores` | - | Scores representing the model's predictions. |
|
|
| **RETURNS** | tuple | The loss and the gradient, i.e. `(loss, gradient)`. |
|
|
|
|
## TextCategorizer.begin_training {#begin_training tag="method"}
|
|
|
|
Initialize the pipe for training, using data examples if available. If no model
|
|
has been initialized yet, the model is added.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> nlp.pipeline.append(textcat)
|
|
> optimizer = textcat.begin_training(pipeline=nlp.pipeline)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `gold_tuples` | iterable | Optional gold-standard annotations from which to construct [`GoldParse`](/api/goldparse) objects. |
|
|
| `pipeline` | list | Optional list of pipeline components that this component is part of. |
|
|
| `sgd` | callable | An optional optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. Will be created via [`TextCategorizer`](/api/textcategorizer#create_optimizer) if not set. |
|
|
| **RETURNS** | callable | An optimizer. |
|
|
|
|
## TextCategorizer.create_optimizer {#create_optimizer tag="method"}
|
|
|
|
Create an optimizer for the pipeline component.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> optimizer = textcat.create_optimizer()
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | -------- | -------------- |
|
|
| **RETURNS** | callable | The optimizer. |
|
|
|
|
## TextCategorizer.use_params {#use_params tag="method, contextmanager"}
|
|
|
|
Modify the pipe's model, to use the given parameter values.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> with textcat.use_params(optimizer.averages):
|
|
> textcat.to_disk("/best_model")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
|
|
| `params` | dict | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
|
|
|
|
## TextCategorizer.add_label {#add_label tag="method"}
|
|
|
|
Add a new label to the pipe.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> textcat.add_label("MY_LABEL")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------- | ------- | ----------------- |
|
|
| `label` | unicode | The label to add. |
|
|
|
|
## TextCategorizer.to_disk {#to_disk tag="method"}
|
|
|
|
Serialize the pipe to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> textcat.to_disk("/path/to/textcat")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| --------- | ---------------- | --------------------------------------------------------------------------------------------------------------------- |
|
|
| `path` | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
|
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
|
|
## TextCategorizer.from_disk {#from_disk tag="method"}
|
|
|
|
Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> textcat.from_disk("/path/to/textcat")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----------------- | -------------------------------------------------------------------------- |
|
|
| `path` | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
|
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `TextCategorizer` | The modified `TextCategorizer` object. |
|
|
|
|
## TextCategorizer.to_bytes {#to_bytes tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> textcat_bytes = textcat.to_bytes()
|
|
> ```
|
|
|
|
Serialize the pipe to a bytestring.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ------------------------------------------------------------------------- |
|
|
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | bytes | The serialized form of the `TextCategorizer` object. |
|
|
|
|
## TextCategorizer.from_bytes {#from_bytes tag="method"}
|
|
|
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat_bytes = textcat.to_bytes()
|
|
> textcat = TextCategorizer(nlp.vocab)
|
|
> textcat.from_bytes(textcat_bytes)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------ | ----------------- | ------------------------------------------------------------------------- |
|
|
| `bytes_data` | bytes | The data to load from. |
|
|
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `TextCategorizer` | The `TextCategorizer` object. |
|
|
|
|
## TextCategorizer.labels {#labels tag="property"}
|
|
|
|
The labels currently added to the component.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> textcat.add_label("MY_LABEL")
|
|
> assert "MY_LABEL" in textcat.labels
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ---------------------------------- |
|
|
| **RETURNS** | tuple | The labels added to the component. |
|
|
|
|
## Serialization fields {#serialization-fields}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = textcat.to_disk("/path", exclude=["vocab"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------- | -------------------------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `cfg` | The config file. You usually don't want to exclude this. |
|
|
| `model` | The binary model data. You usually don't want to exclude this. |
|