mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
99 lines
4.5 KiB
Markdown
99 lines
4.5 KiB
Markdown
<a href="https://explosion.ai"><img src="https://explosion.ai/assets/img/logo.svg" width="125" height="125" align="right" /></a>
|
|
|
|
# A decomposable attention model for Natural Language Inference
|
|
**by Matthew Honnibal, [@honnibal](https://github.com/honnibal)**
|
|
|
|
This directory contains an implementation of the entailment prediction model described
|
|
by [Parikh et al. (2016)](https://arxiv.org/pdf/1606.01933.pdf). The model is notable
|
|
for its competitive performance with very few parameters.
|
|
|
|
The model is implemented using [Keras](https://keras.io/) and [spaCy](https://spacy.io).
|
|
Keras is used to build and train the network. spaCy is used to load
|
|
the [GloVe](http://nlp.stanford.edu/projects/glove/) vectors, perform the
|
|
feature extraction, and help you apply the model at run-time. The following
|
|
demo code shows how the entailment model can be used at runtime, once the
|
|
hook is installed to customise the `.similarity()` method of spaCy's `Doc`
|
|
and `Span` objects:
|
|
|
|
```python
|
|
def demo(model_dir):
|
|
nlp = spacy.load('en', path=model_dir,
|
|
create_pipeline=create_similarity_pipeline)
|
|
doc1 = nlp(u'Worst fries ever! Greasy and horrible...')
|
|
doc2 = nlp(u'The milkshakes are good. The fries are bad.')
|
|
print(doc1.similarity(doc2))
|
|
sent1a, sent1b = doc1.sents
|
|
print(sent1a.similarity(sent1b))
|
|
print(sent1a.similarity(doc2))
|
|
print(sent1b.similarity(doc2))
|
|
```
|
|
|
|
I'm working on a blog post to explain Parikh et al.'s model in more detail.
|
|
I think it is a very interesting example of the attention mechanism, which
|
|
I didn't understand very well before working through this paper. There are
|
|
lots of ways to extend the model.
|
|
|
|
## What's where
|
|
|
|
| File | Description |
|
|
| --- | --- |
|
|
| `__main__.py` | The script that will be executed. Defines the CLI, the data reading, etc — all the boring stuff. |
|
|
| `spacy_hook.py` | Provides a class `SimilarityShim` that lets you use an arbitrary function to customize spaCy's `doc.similarity()` method. Instead of the default average-of-vectors algorithm, when you call `doc1.similarity(doc2)`, you'll get the result of `your_model(doc1, doc2)`. |
|
|
| `keras_decomposable_attention.py` | Defines the neural network model. |
|
|
|
|
## Setting up
|
|
|
|
First, install [Keras](https://keras.io/), [spaCy](https://spacy.io) and the spaCy
|
|
English models (about 1GB of data):
|
|
|
|
```bash
|
|
pip install https://github.com/fchollet/keras/archive/master.zip
|
|
pip install spacy
|
|
python -m spacy.en.download
|
|
```
|
|
|
|
⚠️ **Important:** In order for the example to run, you'll need to install Keras from
|
|
the master branch (and not via `pip install keras`). For more info on this, see
|
|
[#727](https://github.com/explosion/spaCy/issues/727).
|
|
|
|
You'll also want to get Keras working on your GPU. This will depend on your
|
|
set up, so you're mostly on your own for this step. If you're using AWS, try the
|
|
[NVidia AMI](https://aws.amazon.com/marketplace/pp/B00FYCDDTE). It made things pretty easy.
|
|
|
|
Once you've installed the dependencies, you can run a small preliminary test of
|
|
the Keras model:
|
|
|
|
```bash
|
|
py.test keras_parikh_entailment/keras_decomposable_attention.py
|
|
```
|
|
|
|
This compiles the model and fits it with some dummy data. You should see that
|
|
both tests passed.
|
|
|
|
Finally, download the [Stanford Natural Language Inference corpus](http://nlp.stanford.edu/projects/snli/).
|
|
|
|
## Running the example
|
|
|
|
You can run the `keras_parikh_entailment/` directory as a script, which executes the file
|
|
[`keras_parikh_entailment/__main__.py`](__main__.py). The first thing you'll want to do is train the model:
|
|
|
|
```bash
|
|
python keras_parikh_entailment/ train <train_directory> <dev_directory>
|
|
```
|
|
|
|
Training takes about 300 epochs for full accuracy, and I haven't rerun the full
|
|
experiment since refactoring things to publish this example — please let me
|
|
know if I've broken something. You should get to at least 85% on the development data.
|
|
|
|
The other two modes demonstrate run-time usage. I never like relying on the accuracy printed
|
|
by `.fit()` methods. I never really feel confident until I've run a new process that loads
|
|
the model and starts making predictions, without access to the gold labels. I've therefore
|
|
included an `evaluate` mode. Finally, there's also a little demo, which mostly exists to show
|
|
you how run-time usage will eventually look.
|
|
|
|
## Getting updates
|
|
|
|
We should have the blog post explaining the model ready before the end of the week. To get
|
|
notified when it's published, you can either the follow me on [Twitter](https://twitter.com/honnibal),
|
|
or subscribe to our [mailing list](http://eepurl.com/ckUpQ5).
|