mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Add validate option to EntityRuler * Add validate to EntityRuler, passed to Matcher and PhraseMatcher * Add validate to usage and API docs * Update website/docs/usage/rule-based-matching.md Co-Authored-By: Ines Montani <ines@ines.io> * Update website/docs/usage/rule-based-matching.md Co-Authored-By: Ines Montani <ines@ines.io>
		
			
				
	
	
		
			219 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: EntityRuler
 | |
| tag: class
 | |
| source: spacy/pipeline/entityruler.py
 | |
| new: 2.1
 | |
| ---
 | |
| 
 | |
| The EntityRuler lets you add spans to the [`Doc.ents`](/api/doc#ents) using
 | |
| token-based rules or exact phrase matches. It can be combined with the
 | |
| statistical [`EntityRecognizer`](/api/entityrecognizer) to boost accuracy, or
 | |
| used on its own to implement a purely rule-based entity recognition system.
 | |
| After initialization, the component is typically added to the processing
 | |
| pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
 | |
| 
 | |
| ## EntityRuler.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| Initialize the entity ruler. If patterns are supplied here, they need to be a
 | |
| list of dictionaries with a `"label"` and `"pattern"` key. A pattern can either
 | |
| be a token pattern (list) or a phrase pattern (string). For example:
 | |
| `{'label': 'ORG', 'pattern': 'Apple'}`.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via create_pipe
 | |
| > ruler = nlp.create_pipe("entity_ruler")
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import EntityRuler
 | |
| > ruler = EntityRuler(nlp, overwrite_ents=True)
 | |
| > ```
 | |
| 
 | |
| | Name                  | Type          | Description                                                                                                                                           |
 | |
| | --------------------- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `nlp`                 | `Language`    | The shared nlp object to pass the vocab to the matchers and process phrase patterns.                                                                  |
 | |
| | `patterns`            | iterable      | Optional patterns to load in.                                                                                                                         |
 | |
| | `phrase_matcher_attr` | int / unicode | Optional attr to pass to the internal [`PhraseMatcher`](/api/phtasematcher). defaults to `None`                                                       |
 | |
| | `validate`            | bool          | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`.                                         |
 | |
| | `overwrite_ents`      | bool          | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`.                      |
 | |
| | `**cfg`               | -             | Other config parameters. If pipeline component is loaded as part of a model pipeline, this will include all keyword arguments passed to `spacy.load`. |
 | |
| | **RETURNS**           | `EntityRuler` | The newly constructed object.                                                                                                                         |
 | |
| 
 | |
| ## EntityRuler.\_\len\_\_ {#len tag="method"}
 | |
| 
 | |
| The number of all patterns added to the entity ruler.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ruler = EntityRuler(nlp)
 | |
| > assert len(ruler) == 0
 | |
| > ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
 | |
| > assert len(ruler) == 1
 | |
| > ```
 | |
| 
 | |
| | Name        | Type | Description             |
 | |
| | ----------- | ---- | ----------------------- |
 | |
| | **RETURNS** | int  | The number of patterns. |
 | |
| 
 | |
| ## EntityRuler.\_\_contains\_\_ {#contains tag="method"}
 | |
| 
 | |
| Whether a label is present in the patterns.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ruler = EntityRuler(nlp)
 | |
| > ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
 | |
| > assert "ORG" in ruler
 | |
| > assert not "PERSON" in ruler
 | |
| > ```
 | |
| 
 | |
| | Name        | Type    | Description                                  |
 | |
| | ----------- | ------- | -------------------------------------------- |
 | |
| | `label`     | unicode | The label to check.                          |
 | |
| | **RETURNS** | bool    | Whether the entity ruler contains the label. |
 | |
| 
 | |
| ## EntityRuler.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Find matches in the `Doc` and add them to the `doc.ents`. Typically, this
 | |
| happens automatically after the component has been added to the pipeline using
 | |
| [`nlp.add_pipe`](/api/language#add_pipe). If the entity ruler was initialized
 | |
| with `overwrite_ents=True`, existing entities will be replaced if they overlap
 | |
| with the matches.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ruler = EntityRuler(nlp)
 | |
| > ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
 | |
| > nlp.add_pipe(ruler)
 | |
| >
 | |
| > doc = nlp("A text about Apple.")
 | |
| > ents = [(ent.text, ent.label_) for ent in doc.ents]
 | |
| > assert ents == [("Apple", "ORG")]
 | |
| > ```
 | |
| 
 | |
| | Name        | Type  | Description                                                  |
 | |
| | ----------- | ----- | ------------------------------------------------------------ |
 | |
| | `doc`       | `Doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. |
 | |
| | **RETURNS** | `Doc` | The modified `Doc` with added entities, if available.        |
 | |
| 
 | |
| ## EntityRuler.add_patterns {#add_patterns tag="method"}
 | |
| 
 | |
| Add patterns to the entity ruler. A pattern can either be a token pattern (list
 | |
| of dicts) or a phrase pattern (string). For more details, see the usage guide on
 | |
| [rule-based matching](/usage/rule-based-matching).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > patterns = [
 | |
| >     {"label": "ORG", "pattern": "Apple"},
 | |
| >     {"label": "GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]}
 | |
| > ]
 | |
| > ruler = EntityRuler(nlp)
 | |
| > ruler.add_patterns(patterns)
 | |
| > ```
 | |
| 
 | |
| | Name       | Type | Description          |
 | |
| | ---------- | ---- | -------------------- |
 | |
| | `patterns` | list | The patterns to add. |
 | |
| 
 | |
| ## EntityRuler.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Save the entity ruler patterns to a directory. The patterns will be saved as
 | |
| newline-delimited JSON (JSONL). If a file with the suffix `.jsonl` is provided,
 | |
| only the patterns are saved as JSONL. If a directory name is provided, a
 | |
| `patterns.jsonl` and `cfg` file with the component configuration is exported.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ruler = EntityRuler(nlp)
 | |
| > ruler.to_disk("/path/to/patterns.jsonl")  # saves patterns only
 | |
| > ruler.to_disk("/path/to/entity_ruler")    # saves patterns and config
 | |
| > ```
 | |
| 
 | |
| | Name   | Type             | Description                                                                                                                         |
 | |
| | ------ | ---------------- | ----------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `path` | unicode / `Path` | A path to a JSONL file or directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | |
| 
 | |
| ## EntityRuler.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the entity ruler from a file. Expects either a file containing
 | |
| newline-delimited JSON (JSONL) with one entry per line, or a directory
 | |
| containing a `patterns.jsonl` file and a `cfg` file with the component
 | |
| configuration.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ruler = EntityRuler(nlp)
 | |
| > ruler.from_disk("/path/to/patterns.jsonl")  # loads patterns only
 | |
| > ruler.from_disk("/path/to/entity_ruler")    # loads patterns and config
 | |
| > ```
 | |
| 
 | |
| | Name        | Type             | Description                                                                              |
 | |
| | ----------- | ---------------- | ---------------------------------------------------------------------------------------- |
 | |
| | `path`      | unicode / `Path` | A path to a JSONL file or directory. Paths may be either strings or `Path`-like objects. |
 | |
| | **RETURNS** | `EntityRuler`    | The modified `EntityRuler` object.                                                       |
 | |
| 
 | |
| ## EntityRuler.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| Serialize the entity ruler patterns to a bytestring.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ruler = EntityRuler(nlp)
 | |
| > ruler_bytes = ruler.to_bytes()
 | |
| > ```
 | |
| 
 | |
| | Name        | Type  | Description              |
 | |
| | ----------- | ----- | ------------------------ |
 | |
| | **RETURNS** | bytes | The serialized patterns. |
 | |
| 
 | |
| ## EntityRuler.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ruler_bytes = ruler.to_bytes()
 | |
| > ruler = EntityRuler(nlp)
 | |
| > ruler.from_bytes(ruler_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name             | Type          | Description                        |
 | |
| | ---------------- | ------------- | ---------------------------------- |
 | |
| | `patterns_bytes` | bytes         | The bytestring to load.            |
 | |
| | **RETURNS**      | `EntityRuler` | The modified `EntityRuler` object. |
 | |
| 
 | |
| ## EntityRuler.labels {#labels tag="property"}
 | |
| 
 | |
| All labels present in the match patterns.
 | |
| 
 | |
| | Name        | Type  | Description        |
 | |
| | ----------- | ----- | ------------------ |
 | |
| | **RETURNS** | tuple | The string labels. |
 | |
| 
 | |
| ## EntityRuler.patterns {#patterns tag="property"}
 | |
| 
 | |
| Get all patterns that were added to the entity ruler.
 | |
| 
 | |
| | Name        | Type | Description                                        |
 | |
| | ----------- | ---- | -------------------------------------------------- |
 | |
| | **RETURNS** | list | The original patterns, one dictionary per pattern. |
 | |
| 
 | |
| ## Attributes {#attributes}
 | |
| 
 | |
| | Name              | Type                                  | Description                                                      |
 | |
| | ----------------- | ------------------------------------- | ---------------------------------------------------------------- |
 | |
| | `matcher`         | [`Matcher`](/api/matcher)             | The underlying matcher used to process token patterns.           |
 | |
| | `phrase_matcher`  | [`PhraseMatcher`](/api/phtasematcher) | The underlying phrase matcher, used to process phrase patterns.  |
 | |
| | `token_patterns`  | dict                                  | The token patterns present in the entity ruler, keyed by label.  |
 | |
| | `phrase_patterns` | dict                                  | The phrase patterns present in the entity ruler, keyed by label. |
 |