mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-15 22:27:12 +03:00
331 lines
10 KiB
Cython
331 lines
10 KiB
Cython
# cython: infer_types=True
|
|
# cython: profile=True
|
|
import json
|
|
import pathlib
|
|
from collections import defaultdict
|
|
from libc.string cimport memset, memcpy
|
|
from libcpp.vector cimport vector
|
|
from libc.stdint cimport uint64_t, int32_t, int64_t
|
|
cimport numpy as np
|
|
import numpy as np
|
|
np.import_array()
|
|
|
|
from cymem.cymem cimport Pool
|
|
from thinc.typedefs cimport atom_t, weight_t
|
|
from thinc.extra.eg cimport Example
|
|
from thinc.structs cimport ExampleC
|
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
|
from thinc.linalg cimport Vec, VecVec
|
|
from thinc.structs cimport FeatureC
|
|
from thinc.neural.optimizers import Adam, SGD
|
|
from thinc.neural.ops import NumpyOps
|
|
|
|
from .typedefs cimport attr_t
|
|
from .tokens.doc cimport Doc
|
|
from .attrs cimport TAG
|
|
from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CCONJ, DET, NOUN, NUM, PRON
|
|
from .parts_of_speech cimport VERB, X, PUNCT, EOL, SPACE
|
|
from .gold cimport GoldParse
|
|
|
|
from .attrs cimport *
|
|
|
|
|
|
cpdef enum:
|
|
P2_orth
|
|
P2_cluster
|
|
P2_shape
|
|
P2_prefix
|
|
P2_suffix
|
|
P2_pos
|
|
P2_lemma
|
|
P2_flags
|
|
|
|
P1_orth
|
|
P1_cluster
|
|
P1_shape
|
|
P1_prefix
|
|
P1_suffix
|
|
P1_pos
|
|
P1_lemma
|
|
P1_flags
|
|
|
|
W_orth
|
|
W_cluster
|
|
W_shape
|
|
W_prefix
|
|
W_suffix
|
|
W_pos
|
|
W_lemma
|
|
W_flags
|
|
|
|
N1_orth
|
|
N1_cluster
|
|
N1_shape
|
|
N1_prefix
|
|
N1_suffix
|
|
N1_pos
|
|
N1_lemma
|
|
N1_flags
|
|
|
|
N2_orth
|
|
N2_cluster
|
|
N2_shape
|
|
N2_prefix
|
|
N2_suffix
|
|
N2_pos
|
|
N2_lemma
|
|
N2_flags
|
|
|
|
N_CONTEXT_FIELDS
|
|
|
|
|
|
cdef class TaggerModel(LinearModel):
|
|
cdef int set_featuresC(self, FeatureC* features, atom_t* context,
|
|
const TokenC* tokens, int i) nogil:
|
|
_fill_from_token(&context[P2_orth], &tokens[i-2])
|
|
_fill_from_token(&context[P1_orth], &tokens[i-1])
|
|
_fill_from_token(&context[W_orth], &tokens[i])
|
|
_fill_from_token(&context[N1_orth], &tokens[i+1])
|
|
_fill_from_token(&context[N2_orth], &tokens[i+2])
|
|
nr_feat = self.extracter.set_features(features, context)
|
|
return nr_feat
|
|
|
|
|
|
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
|
context[0] = t.lex.lower
|
|
context[1] = t.lex.cluster
|
|
context[2] = t.lex.shape
|
|
context[3] = t.lex.prefix
|
|
context[4] = t.lex.suffix
|
|
context[5] = t.tag
|
|
context[6] = t.lemma
|
|
if t.lex.flags & (1 << IS_ALPHA):
|
|
context[7] = 1
|
|
elif t.lex.flags & (1 << IS_PUNCT):
|
|
context[7] = 2
|
|
elif t.lex.flags & (1 << LIKE_URL):
|
|
context[7] = 3
|
|
elif t.lex.flags & (1 << LIKE_NUM):
|
|
context[7] = 4
|
|
else:
|
|
context[7] = 0
|
|
|
|
|
|
cdef class Tagger:
|
|
"""Annotate part-of-speech tags on Doc objects."""
|
|
@classmethod
|
|
def load(cls, path, vocab, require=False):
|
|
"""Load the statistical model from the supplied path.
|
|
|
|
Arguments:
|
|
path (Path):
|
|
The path to load from.
|
|
vocab (Vocab):
|
|
The vocabulary. Must be shared by the documents to be processed.
|
|
require (bool):
|
|
Whether to raise an error if the files are not found.
|
|
Returns (Tagger):
|
|
The newly created object.
|
|
"""
|
|
# TODO: Change this to expect config.json when we don't have to
|
|
# support old data.
|
|
path = path if not isinstance(path, basestring) else pathlib.Path(path)
|
|
if (path / 'templates.json').exists():
|
|
with (path / 'templates.json').open('r', encoding='utf8') as file_:
|
|
templates = json.load(file_)
|
|
elif require:
|
|
raise IOError(
|
|
"Required file %s/templates.json not found when loading Tagger" % str(path))
|
|
else:
|
|
templates = cls.feature_templates
|
|
self = cls(vocab, model=None, feature_templates=templates)
|
|
|
|
if (path / 'model').exists():
|
|
self.model.load(str(path / 'model'))
|
|
elif require:
|
|
raise IOError(
|
|
"Required file %s/model not found when loading Tagger" % str(path))
|
|
return self
|
|
|
|
def __init__(self, Vocab vocab, TaggerModel model=None, **cfg):
|
|
"""Create a Tagger.
|
|
|
|
Arguments:
|
|
vocab (Vocab):
|
|
The vocabulary object. Must be shared with documents to be processed.
|
|
model (thinc.linear.AveragedPerceptron):
|
|
The statistical model.
|
|
Returns (Tagger):
|
|
The newly constructed object.
|
|
"""
|
|
if model is None:
|
|
print("Create tagger")
|
|
model = TaggerModel(vocab.morphology.n_tags,
|
|
cfg.get('features', self.feature_templates),
|
|
learn_rate=0.01, size=2**18)
|
|
self.vocab = vocab
|
|
self.model = model
|
|
# TODO: Move this to tag map
|
|
self.freqs = {TAG: defaultdict(int)}
|
|
for tag in self.tag_names:
|
|
self.freqs[TAG][self.vocab.strings[tag]] = 1
|
|
self.freqs[TAG][0] = 1
|
|
self.cfg = cfg
|
|
self.optimizer = SGD(NumpyOps(), 0.001, momentum=0.9)
|
|
|
|
@property
|
|
def tag_names(self):
|
|
return self.vocab.morphology.tag_names
|
|
|
|
def __reduce__(self):
|
|
return (self.__class__, (self.vocab, self.model), None, None)
|
|
|
|
def tag_from_strings(self, Doc tokens, object tag_strs):
|
|
cdef int i
|
|
for i in range(tokens.length):
|
|
self.vocab.morphology.assign_tag(&tokens.c[i], tag_strs[i])
|
|
tokens.is_tagged = True
|
|
tokens._py_tokens = [None] * tokens.length
|
|
|
|
def __call__(self, Doc tokens):
|
|
"""Apply the tagger, setting the POS tags onto the Doc object.
|
|
|
|
Arguments:
|
|
doc (Doc): The tokens to be tagged.
|
|
Returns:
|
|
None
|
|
"""
|
|
if tokens.length == 0:
|
|
return 0
|
|
|
|
cdef atom_t[N_CONTEXT_FIELDS] context
|
|
|
|
cdef int nr_class = self.vocab.morphology.n_tags
|
|
cdef Pool mem = Pool()
|
|
scores = <weight_t*>mem.alloc(nr_class, sizeof(weight_t))
|
|
features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
|
|
for i in range(tokens.length):
|
|
if tokens.c[i].pos == 0:
|
|
nr_feat = self.model.set_featuresC(features, context, tokens.c, i)
|
|
self.model.set_scoresC(scores,
|
|
features, nr_feat)
|
|
guess = Vec.arg_max(scores, nr_class)
|
|
self.vocab.morphology.assign_tag_id(&tokens.c[i], guess)
|
|
memset(scores, 0, sizeof(weight_t) * nr_class)
|
|
memset(features, 0, sizeof(FeatureC) * nr_feat)
|
|
memset(context, 0, sizeof(N_CONTEXT_FIELDS))
|
|
tokens.is_tagged = True
|
|
tokens._py_tokens = [None] * tokens.length
|
|
|
|
def pipe(self, stream, batch_size=1000, n_threads=2):
|
|
"""Tag a stream of documents.
|
|
|
|
Arguments:
|
|
stream: The sequence of documents to tag.
|
|
batch_size (int):
|
|
The number of documents to accumulate into a working set.
|
|
n_threads (int):
|
|
The number of threads with which to work on the buffer in parallel,
|
|
if the Matcher implementation supports multi-threading.
|
|
Yields:
|
|
Doc Documents, in order.
|
|
"""
|
|
for doc in stream:
|
|
self(doc)
|
|
yield doc
|
|
|
|
def update(self, Doc tokens, GoldParse gold, itn=0):
|
|
"""Update the statistical model, with tags supplied for the given document.
|
|
|
|
Arguments:
|
|
doc (Doc):
|
|
The document to update on.
|
|
gold (GoldParse):
|
|
Manager for the gold-standard tags.
|
|
Returns (int):
|
|
Number of tags correct.
|
|
"""
|
|
gold_tag_strs = gold.tags
|
|
assert len(tokens) == len(gold_tag_strs)
|
|
for tag in gold_tag_strs:
|
|
if tag != None and tag not in self.tag_names:
|
|
msg = ("Unrecognized gold tag: %s. tag_map.json must contain all "
|
|
"gold tags, to maintain coarse-grained mapping.")
|
|
raise ValueError(msg % tag)
|
|
cdef Pool mem = Pool()
|
|
golds = <int*>mem.alloc(sizeof(int), len(gold_tag_strs))
|
|
for i, g in enumerate(gold_tag_strs):
|
|
golds[i] = self.tag_names.index(g) if g is not None else -1
|
|
|
|
cdef atom_t[N_CONTEXT_FIELDS] context
|
|
cdef int nr_class = self.model.nr_class
|
|
costs = <weight_t*>mem.alloc(sizeof(weight_t), nr_class)
|
|
features = <FeatureC*>mem.alloc(sizeof(FeatureC), self.model.nr_feat)
|
|
scores = <weight_t*>mem.alloc(sizeof(weight_t), nr_class)
|
|
d_scores = <weight_t*>mem.alloc(sizeof(weight_t), nr_class)
|
|
|
|
cdef int correct = 0
|
|
for i in range(tokens.length):
|
|
nr_feat = self.model.set_featuresC(features, context, tokens.c, i)
|
|
self.model.set_scoresC(scores,
|
|
features, nr_feat)
|
|
|
|
if golds[i] != -1:
|
|
for j in range(nr_class):
|
|
costs[j] = 1
|
|
costs[golds[i]] = 0
|
|
self.model.log_lossC(d_scores, scores, costs)
|
|
self.model.set_gradientC(d_scores, features, nr_feat)
|
|
|
|
guess = Vec.arg_max(scores, nr_class)
|
|
#print(tokens[i].text, golds[i], guess, [features[i].key for i in range(nr_feat)])
|
|
|
|
self.vocab.morphology.assign_tag_id(&tokens.c[i], guess)
|
|
|
|
self.freqs[TAG][tokens.c[i].tag] += 1
|
|
correct += costs[guess] == 0
|
|
|
|
memset(features, 0, sizeof(FeatureC) * nr_feat)
|
|
memset(costs, 0, sizeof(weight_t) * nr_class)
|
|
memset(scores, 0, sizeof(weight_t) * nr_class)
|
|
memset(d_scores, 0, sizeof(weight_t) * nr_class)
|
|
|
|
#if itn % 10 == 0:
|
|
# self.optimizer(self.model.weights.ravel(), self.model.d_weights.ravel(),
|
|
# key=1)
|
|
tokens.is_tagged = True
|
|
tokens._py_tokens = [None] * tokens.length
|
|
return correct
|
|
|
|
|
|
feature_templates = (
|
|
(W_orth,),
|
|
(P1_lemma, P1_pos),
|
|
(P2_lemma, P2_pos),
|
|
(N1_orth,),
|
|
(N2_orth,),
|
|
|
|
(W_suffix,),
|
|
(W_prefix,),
|
|
|
|
(P1_pos,),
|
|
(P2_pos,),
|
|
(P1_pos, P2_pos),
|
|
(P1_pos, W_orth),
|
|
(P1_suffix,),
|
|
(N1_suffix,),
|
|
|
|
(W_shape,),
|
|
(W_cluster,),
|
|
(N1_cluster,),
|
|
(N2_cluster,),
|
|
(P1_cluster,),
|
|
(P2_cluster,),
|
|
|
|
(W_flags,),
|
|
(N1_flags,),
|
|
(N2_flags,),
|
|
(P1_flags,),
|
|
(P2_flags,),
|
|
)
|