mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 10:14:07 +03:00
380 lines
18 KiB
Markdown
380 lines
18 KiB
Markdown
---
|
|
title: EntityRecognizer
|
|
tag: class
|
|
source: spacy/pipeline/ner.pyx
|
|
teaser: 'Pipeline component for named entity recognition'
|
|
api_base_class: /api/pipe
|
|
api_string_name: ner
|
|
api_trainable: true
|
|
---
|
|
|
|
## Config and implementation {#config}
|
|
|
|
The default config is defined by the pipeline component factory and describes
|
|
how the component should be configured. You can override its settings via the
|
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
|
[`config.cfg` for training](/usage/training#config). See the
|
|
[model architectures](/api/architectures) documentation for details on the
|
|
architectures and their arguments and hyperparameters.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
|
> config = {
|
|
> "moves": None,
|
|
> # TODO: rest
|
|
> "model": DEFAULT_NER_MODEL,
|
|
> }
|
|
> nlp.add_pipe("ner", config=config)
|
|
> ```
|
|
|
|
| Setting | Type | Description | Default |
|
|
| ------- | ------------------------------------------ | ----------------- | ----------------------------------------------------------------- |
|
|
| `moves` | list | <!-- TODO: --> | `None` |
|
|
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The model to use. | [TransitionBasedParser](/api/architectures#TransitionBasedParser) |
|
|
|
|
```python
|
|
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/ner.pyx
|
|
```
|
|
|
|
## EntityRecognizer.\_\_init\_\_ {#init tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction via add_pipe with default model
|
|
> ner = nlp.add_pipe("ner")
|
|
>
|
|
> # Construction via add_pipe with custom model
|
|
> config = {"model": {"@architectures": "my_ner"}}
|
|
> parser = nlp.add_pipe("ner", config=config)
|
|
>
|
|
> # Construction from class
|
|
> from spacy.pipeline import EntityRecognizer
|
|
> ner = EntityRecognizer(nlp.vocab, model)
|
|
> ```
|
|
|
|
Create a new pipeline instance. In your application, you would normally use a
|
|
shortcut for this and instantiate the component using its string name and
|
|
[`nlp.add_pipe`](/api/language#add_pipe).
|
|
|
|
| Name | Type | Description |
|
|
| ----------------------------- | ------------------------------------------ | ------------------------------------------------------------------------------------------- |
|
|
| `vocab` | `Vocab` | The shared vocabulary. |
|
|
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
|
|
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
|
|
| `moves` | list | <!-- TODO: --> |
|
|
| _keyword-only_ | | |
|
|
| `update_with_oracle_cut_size` | int | <!-- TODO: --> |
|
|
| `multitasks` | `Iterable` | <!-- TODO: --> |
|
|
| `learn_tokens` | bool | <!-- TODO: --> |
|
|
| `min_action_freq` | int | <!-- TODO: --> |
|
|
|
|
## EntityRecognizer.\_\_call\_\_ {#call tag="method"}
|
|
|
|
Apply the pipe to one document. The document is modified in place, and returned.
|
|
This usually happens under the hood when the `nlp` object is called on a text
|
|
and all pipeline components are applied to the `Doc` in order. Both
|
|
[`__call__`](/api/entityrecognizer#call) and
|
|
[`pipe`](/api/entityrecognizer#pipe) delegate to the
|
|
[`predict`](/api/entityrecognizer#predict) and
|
|
[`set_annotations`](/api/entityrecognizer#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc = nlp("This is a sentence.")
|
|
> ner = nlp.add_pipe("ner")
|
|
> # This usually happens under the hood
|
|
> processed = ner(doc)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ------------------------ |
|
|
| `doc` | `Doc` | The document to process. |
|
|
| **RETURNS** | `Doc` | The processed document. |
|
|
|
|
## EntityRecognizer.pipe {#pipe tag="method"}
|
|
|
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
|
when the `nlp` object is called on a text and all pipeline components are
|
|
applied to the `Doc` in order. Both [`__call__`](/api/entityrecognizer#call) and
|
|
[`pipe`](/api/entityrecognizer#pipe) delegate to the
|
|
[`predict`](/api/entityrecognizer#predict) and
|
|
[`set_annotations`](/api/entityrecognizer#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> for doc in ner.pipe(docs, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | ------------------------------------------------------ |
|
|
| `docs` | `Iterable[Doc]` | A stream of documents. |
|
|
| _keyword-only_ | | |
|
|
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
|
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
|
|
|
## EntityRecognizer.begin_training {#begin_training tag="method"}
|
|
|
|
Initialize the pipe for training, using data examples if available. Return an
|
|
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> optimizer = ner.begin_training(pipeline=nlp.pipeline)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------- |
|
|
| `get_examples` | `Callable[[], Iterable[Example]]` | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. |
|
|
| _keyword-only_ | | |
|
|
| `pipeline` | `List[Tuple[str, Callable]]` | Optional list of pipeline components that this component is part of. |
|
|
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/entityrecognizer#create_optimizer) if not set. |
|
|
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
|
|
|
## EntityRecognizer.predict {#predict tag="method"}
|
|
|
|
Apply the pipeline's model to a batch of docs, without modifying them.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> scores = ner.predict([doc1, doc2])
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------------ | ---------------------------------------------------------------------------------------------------------- |
|
|
| `docs` | `Iterable[Doc]` | The documents to predict. |
|
|
| **RETURNS** | `List[StateClass]` | List of `syntax.StateClass` objects. `syntax.StateClass` is a helper class for the parse state (internal). |
|
|
|
|
## EntityRecognizer.set_annotations {#set_annotations tag="method"}
|
|
|
|
Modify a batch of documents, using pre-computed scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> scores = ner.predict([doc1, doc2])
|
|
> ner.set_annotations([doc1, doc2], scores)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------- | ------------------ | ---------------------------------------------------------- |
|
|
| `docs` | `Iterable[Doc]` | The documents to modify. |
|
|
| `scores` | `List[StateClass]` | The scores to set, produced by `EntityRecognizer.predict`. |
|
|
|
|
## EntityRecognizer.update {#update tag="method"}
|
|
|
|
Learn from a batch of [`Example`](/api/example) objects, updating the pipe's
|
|
model. Delegates to [`predict`](/api/entityrecognizer#predict) and
|
|
[`get_loss`](/api/entityrecognizer#get_loss).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> optimizer = nlp.begin_training()
|
|
> losses = ner.update(examples, sgd=optimizer)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
|
|
| _keyword-only_ | | |
|
|
| `drop` | float | The dropout rate. |
|
|
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/entityrecognizer#set_annotations). |
|
|
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
|
| `losses` | `Dict[str, float]` | Optional record of the loss during training. Updated using the component name as the key. |
|
|
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
|
|
|
|
## EntityRecognizer.get_loss {#get_loss tag="method"}
|
|
|
|
Find the loss and gradient of loss for the batch of documents and their
|
|
predicted scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> scores = ner.predict([eg.predicted for eg in examples])
|
|
> loss, d_loss = ner.get_loss(examples, scores)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------------- | --------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | The batch of examples. |
|
|
| `scores` | `List[StateClass]` | Scores representing the model's predictions. |
|
|
| **RETURNS** | `Tuple[float, float]` | The loss and the gradient, i.e. `(loss, gradient)`. |
|
|
|
|
## EntityRecognizer.score {#score tag="method" new="3"}
|
|
|
|
Score a batch of examples.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scores = ner.score(examples)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------------- | ------------------------------------------------------------------------ |
|
|
| `examples` | `Iterable[Example]` | The examples to score. |
|
|
| **RETURNS** | `Dict[str, Any]` | The scores, produced by [`Scorer.score_spans`](/api/scorer#score_spans). |
|
|
|
|
## EntityRecognizer.create_optimizer {#create_optimizer tag="method"}
|
|
|
|
Create an optimizer for the pipeline component.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> optimizer = ner.create_optimizer()
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------------------------------------------- | -------------- |
|
|
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
|
|
|
## EntityRecognizer.use_params {#use_params tag="method, contextmanager"}
|
|
|
|
Modify the pipe's model, to use the given parameter values. At the end of the
|
|
context, the original parameters are restored.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = EntityRecognizer(nlp.vocab)
|
|
> with ner.use_params(optimizer.averages):
|
|
> ner.to_disk("/best_model")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------- | ---- | ----------------------------------------- |
|
|
| `params` | dict | The parameter values to use in the model. |
|
|
|
|
## EntityRecognizer.add_label {#add_label tag="method"}
|
|
|
|
Add a new label to the pipe.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.add_label("MY_LABEL")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ---- | --------------------------------------------------- |
|
|
| `label` | str | The label to add. |
|
|
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
|
|
|
|
## EntityRecognizer.to_disk {#to_disk tag="method"}
|
|
|
|
Serialize the pipe to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.to_disk("/path/to/ner")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| --------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
|
|
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
|
|
## EntityRecognizer.from_disk {#from_disk tag="method"}
|
|
|
|
Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.from_disk("/path/to/ner")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------------ | -------------------------------------------------------------------------- |
|
|
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `EntityRecognizer` | The modified `EntityRecognizer` object. |
|
|
|
|
## EntityRecognizer.to_bytes {#to_bytes tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner_bytes = ner.to_bytes()
|
|
> ```
|
|
|
|
Serialize the pipe to a bytestring.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------- | ------------------------------------------------------------------------- |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | bytes | The serialized form of the `EntityRecognizer` object. |
|
|
|
|
## EntityRecognizer.from_bytes {#from_bytes tag="method"}
|
|
|
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner_bytes = ner.to_bytes()
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.from_bytes(ner_bytes)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------ | ------------------ | ------------------------------------------------------------------------- |
|
|
| `bytes_data` | bytes | The data to load from. |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `EntityRecognizer` | The `EntityRecognizer` object. |
|
|
|
|
## EntityRecognizer.labels {#labels tag="property"}
|
|
|
|
The labels currently added to the component.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner.add_label("MY_LABEL")
|
|
> assert "MY_LABEL" in ner.labels
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ---------------------------------- |
|
|
| **RETURNS** | tuple | The labels added to the component. |
|
|
|
|
## Serialization fields {#serialization-fields}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = ner.to_disk("/path", exclude=["vocab"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------- | -------------------------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `cfg` | The config file. You usually don't want to exclude this. |
|
|
| `model` | The binary model data. You usually don't want to exclude this. |
|