mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			308 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			308 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: EntityLinker
 | ||
| tag: class
 | ||
| source: spacy/pipeline/entity_linker.py
 | ||
| new: 2.2
 | ||
| teaser: 'Pipeline component for named entity linking and disambiguation'
 | ||
| api_base_class: /api/pipe
 | ||
| api_string_name: entity_linker
 | ||
| api_trainable: true
 | ||
| ---
 | ||
| 
 | ||
| ## Config and implementation {#config}
 | ||
| 
 | ||
| The default config is defined by the pipeline component factory and describes
 | ||
| how the component should be configured. You can override its settings via the
 | ||
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | ||
| [`config.cfg` for training](/usage/training#config). See the
 | ||
| [model architectures](/api/architectures) documentation for details on the
 | ||
| architectures and their arguments and hyperparameters.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.pipeline.entity_linker import DEFAULT_NEL_MODEL
 | ||
| > config = {
 | ||
| >    "kb": None,
 | ||
| >    "labels_discard": [],
 | ||
| >    "incl_prior": True,
 | ||
| >    "incl_context": True,
 | ||
| >    "model": DEFAULT_NEL_MODEL,
 | ||
| > }
 | ||
| > nlp.add_pipe("entity_linker", config=config)
 | ||
| > ```
 | ||
| 
 | ||
| | Setting          | Type                                       | Description       | Default                                         |
 | ||
| | ---------------- | ------------------------------------------ | ----------------- | ----------------------------------------------- |
 | ||
| | `kb`             | `KnowledgeBase`                            | <!-- TODO: -->    | `None`                                          |
 | ||
| | `labels_discard` | `Iterable[str]`                            | <!-- TODO: -->    | `[]`                                            |
 | ||
| | `incl_prior`     | bool                                       | <!-- TODO: -->    |  `True`                                         |
 | ||
| | `incl_context`   | bool                                       | <!-- TODO: -->    | `True`                                          |
 | ||
| | `model`          | [`Model`](https://thinc.ai/docs/api-model) | The model to use. | [EntityLinker](/api/architectures#EntityLinker) |
 | ||
| 
 | ||
| ```python
 | ||
| https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/entity_linker.py
 | ||
| ```
 | ||
| 
 | ||
| ## EntityLinker.\_\_init\_\_ {#init tag="method"}
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > # Construction via add_pipe with default model
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| >
 | ||
| > # Construction via add_pipe with custom model
 | ||
| > config = {"model": {"@architectures": "my_el"}}
 | ||
| > entity_linker = nlp.add_pipe("entity_linker", config=config)
 | ||
| >
 | ||
| > # Construction from class
 | ||
| > from spacy.pipeline import EntityLinker
 | ||
| > entity_linker = EntityLinker(nlp.vocab, model)
 | ||
| > ```
 | ||
| 
 | ||
| Create a new pipeline instance. In your application, you would normally use a
 | ||
| shortcut for this and instantiate the component using its string name and
 | ||
| [`nlp.add_pipe`](/api/language#add_pipe).
 | ||
| 
 | ||
| | Name             | Type            | Description                                                                                 |
 | ||
| | ---------------- | --------------- | ------------------------------------------------------------------------------------------- |
 | ||
| | `vocab`          | `Vocab`         | The shared vocabulary.                                                                      |
 | ||
| | `model`          | `Model`         | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component.             |
 | ||
| | `name`           | str             | String name of the component instance. Used to add entries to the `losses` during training. |
 | ||
| | _keyword-only_   |                 |                                                                                             |
 | ||
| | `kb`             | `KnowlegeBase`  | <!-- TODO: -->                                                                              |
 | ||
| | `labels_discard` | `Iterable[str]` | <!-- TODO: -->                                                                              |
 | ||
| | `incl_prior`     | bool            | <!-- TODO: -->                                                                              |
 | ||
| | `incl_context`   | bool            | <!-- TODO: -->                                                                              |
 | ||
| 
 | ||
| ## EntityLinker.\_\_call\_\_ {#call tag="method"}
 | ||
| 
 | ||
| Apply the pipe to one document. The document is modified in place, and returned.
 | ||
| This usually happens under the hood when the `nlp` object is called on a text
 | ||
| and all pipeline components are applied to the `Doc` in order. Both
 | ||
| [`__call__`](/api/entitylinker#call) and [`pipe`](/api/entitylinker#pipe)
 | ||
| delegate to the [`predict`](/api/entitylinker#predict) and
 | ||
| [`set_annotations`](/api/entitylinker#set_annotations) methods.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > doc = nlp("This is a sentence.")
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > # This usually happens under the hood
 | ||
| > processed = entity_linker(doc)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type  | Description              |
 | ||
| | ----------- | ----- | ------------------------ |
 | ||
| | `doc`       | `Doc` | The document to process. |
 | ||
| | **RETURNS** | `Doc` | The processed document.  |
 | ||
| 
 | ||
| ## EntityLinker.pipe {#pipe tag="method"}
 | ||
| 
 | ||
| Apply the pipe to a stream of documents. This usually happens under the hood
 | ||
| when the `nlp` object is called on a text and all pipeline components are
 | ||
| applied to the `Doc` in order. Both [`__call__`](/api/entitylinker#call) and
 | ||
| [`pipe`](/api/entitylinker#pipe) delegate to the
 | ||
| [`predict`](/api/entitylinker#predict) and
 | ||
| [`set_annotations`](/api/entitylinker#set_annotations) methods.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > for doc in entity_linker.pipe(docs, batch_size=50):
 | ||
| >     pass
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Type            | Description                                            |
 | ||
| | -------------- | --------------- | ------------------------------------------------------ |
 | ||
| | `stream`       | `Iterable[Doc]` | A stream of documents.                                 |
 | ||
| | _keyword-only_ |                 |                                                        |
 | ||
| | `batch_size`   | int             | The number of texts to buffer. Defaults to `128`.      |
 | ||
| | **YIELDS**     | `Doc`           | Processed documents in the order of the original text. |
 | ||
| 
 | ||
| ## EntityLinker.begin_training {#begin_training tag="method"}
 | ||
| 
 | ||
| Initialize the pipe for training, using data examples if available. Return an
 | ||
| [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. Before calling this
 | ||
| method, a knowledge base should have been defined with
 | ||
| [`set_kb`](/api/entitylinker#set_kb).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker", last=True)
 | ||
| > entity_linker.set_kb(kb)
 | ||
| > optimizer = entity_linker.begin_training(pipeline=nlp.pipeline)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Type                                                | Description                                                                                                         |
 | ||
| | -------------- | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `get_examples` | `Callable[[], Iterable[Example]]`                   | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects.          |
 | ||
| | _keyword-only_ |                                                     |                                                                                                                     |
 | ||
| | `pipeline`     | `List[Tuple[str, Callable]]`                        | Optional list of pipeline components that this component is part of.                                                |
 | ||
| | `sgd`          | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/dependencyparser#create_optimizer) if not set. |
 | ||
| | **RETURNS**    | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer.                                                                                                      |
 | ||
| 
 | ||
| ## EntityLinker.predict {#predict tag="method"}
 | ||
| 
 | ||
| Apply the pipeline's model to a batch of docs, without modifying them. Returns
 | ||
| the KB IDs for each entity in each doc, including `NIL` if there is no
 | ||
| prediction.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > kb_ids = entity_linker.predict([doc1, doc2])
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type            | Description                                                  |
 | ||
| | ----------- | --------------- | ------------------------------------------------------------ |
 | ||
| | `docs`      | `Iterable[Doc]` | The documents to predict.                                    |
 | ||
| | **RETURNS** | `List[str]`     | The predicted KB identifiers for the entities in the `docs`. |
 | ||
| 
 | ||
| ## EntityLinker.set_annotations {#set_annotations tag="method"}
 | ||
| 
 | ||
| Modify a batch of documents, using pre-computed entity IDs for a list of named
 | ||
| entities.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > kb_ids = entity_linker.predict([doc1, doc2])
 | ||
| > entity_linker.set_annotations([doc1, doc2], kb_ids)
 | ||
| > ```
 | ||
| 
 | ||
| | Name     | Type            | Description                                                                                       |
 | ||
| | -------- | --------------- | ------------------------------------------------------------------------------------------------- |
 | ||
| | `docs`   | `Iterable[Doc]` | The documents to modify.                                                                          |
 | ||
| | `kb_ids` | `List[str]`     | The knowledge base identifiers for the entities in the docs, predicted by `EntityLinker.predict`. |
 | ||
| 
 | ||
| ## EntityLinker.update {#update tag="method"}
 | ||
| 
 | ||
| Learn from a batch of [`Example`](/api/example) objects, updating both the
 | ||
| pipe's entity linking model and context encoder. Delegates to
 | ||
| [`predict`](/api/entitylinker#predict).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > optimizer = nlp.begin_training()
 | ||
| > losses = entity_linker.update(examples, sgd=optimizer)
 | ||
| > ```
 | ||
| 
 | ||
| | Name              | Type                                                | Description                                                                                                                                   |
 | ||
| | ----------------- | --------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `examples`        | `Iterable[Example]`                                 | A batch of [`Example`](/api/example) objects to learn from.                                                                                   |
 | ||
| | _keyword-only_    |                                                     |                                                                                                                                               |
 | ||
| | `drop`            | float                                               | The dropout rate.                                                                                                                             |
 | ||
| | `set_annotations` | bool                                                | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/textcategorizer#set_annotations). |
 | ||
| | `sgd`             | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer.                                                                                                                                |
 | ||
| | `losses`          | `Dict[str, float]`                                  | Optional record of the loss during training. Updated using the component name as the key.                                                     |
 | ||
| | **RETURNS**       | `Dict[str, float]`                                  | The updated `losses` dictionary.                                                                                                              |
 | ||
| 
 | ||
| ## EntityLinker.set_kb {#set_kb tag="method"}
 | ||
| 
 | ||
| Define the knowledge base (KB) used for disambiguating named entities to KB
 | ||
| identifiers.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > entity_linker.set_kb(kb)
 | ||
| > ```
 | ||
| 
 | ||
| | Name | Type            | Description                     |
 | ||
| | ---- | --------------- | ------------------------------- |
 | ||
| | `kb` | `KnowledgeBase` | The [`KnowledgeBase`](/api/kb). |
 | ||
| 
 | ||
| ## EntityLinker.create_optimizer {#create_optimizer tag="method"}
 | ||
| 
 | ||
| Create an optimizer for the pipeline component.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > optimizer = entity_linker.create_optimizer()
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type                                                | Description    |
 | ||
| | ----------- | --------------------------------------------------- | -------------- |
 | ||
| | **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
 | ||
| 
 | ||
| ## EntityLinker.use_params {#use_params tag="method, contextmanager"}
 | ||
| 
 | ||
| Modify the pipe's model, to use the given parameter values. At the end of the
 | ||
| context, the original parameters are restored.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > with entity_linker.use_params(optimizer.averages):
 | ||
| >     entity_linker.to_disk("/best_model")
 | ||
| > ```
 | ||
| 
 | ||
| | Name     | Type | Description                               |
 | ||
| | -------- | ---- | ----------------------------------------- |
 | ||
| | `params` | dict | The parameter values to use in the model. |
 | ||
| 
 | ||
| ## EntityLinker.to_disk {#to_disk tag="method"}
 | ||
| 
 | ||
| Serialize the pipe to disk.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > entity_linker.to_disk("/path/to/entity_linker")
 | ||
| > ```
 | ||
| 
 | ||
| | Name      | Type            | Description                                                                                                           |
 | ||
| | --------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `path`    | str / `Path`    | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | ||
| | `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | ||
| 
 | ||
| ## EntityLinker.from_disk {#from_disk tag="method"}
 | ||
| 
 | ||
| Load the pipe from disk. Modifies the object in place and returns it.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > entity_linker = nlp.add_pipe("entity_linker")
 | ||
| > entity_linker.from_disk("/path/to/entity_linker")
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type            | Description                                                                |
 | ||
| | ----------- | --------------- | -------------------------------------------------------------------------- |
 | ||
| | `path`      | str / `Path`    | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | ||
| | `exclude`   | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude.  |
 | ||
| | **RETURNS** | `EntityLinker`  | The modified `EntityLinker` object.                                        |
 | ||
| 
 | ||
| ## Serialization fields {#serialization-fields}
 | ||
| 
 | ||
| During serialization, spaCy will export several data fields used to restore
 | ||
| different aspects of the object. If needed, you can exclude them from
 | ||
| serialization by passing in the string names via the `exclude` argument.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > data = entity_linker.to_disk("/path", exclude=["vocab"])
 | ||
| > ```
 | ||
| 
 | ||
| | Name    | Description                                                    |
 | ||
| | ------- | -------------------------------------------------------------- |
 | ||
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | ||
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | ||
| | `model` | The binary model data. You usually don't want to exclude this. |
 | ||
| | `kb`    | The knowledge base. You usually don't want to exclude this.    |
 |