mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			303 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			303 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Tok2Vec
 | |
| source: spacy/pipeline/tok2vec.py
 | |
| new: 3
 | |
| teaser: null
 | |
| api_base_class: /api/pipe
 | |
| api_string_name: tok2vec
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| <!-- TODO: intro describing component -->
 | |
| 
 | |
| ## Config and implementation {#config}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | |
| > config = {"model": DEFAULT_TOK2VEC_MODEL}
 | |
| > nlp.add_pipe("tok2vec", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting | Type                                       | Description       | Default                                         |
 | |
| | ------- | ------------------------------------------ | ----------------- | ----------------------------------------------- |
 | |
| | `model` | [`Model`](https://thinc.ai/docs/api-model) | The model to use. | [HashEmbedCNN](/api/architectures#HashEmbedCNN) |
 | |
| 
 | |
| ```python
 | |
| https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/tok2vec.py
 | |
| ```
 | |
| 
 | |
| ## Tok2Vec.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| >
 | |
| > # Construction via add_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_tok2vec"}}
 | |
| > parser = nlp.add_pipe("tok2vec", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import Tok2Vec
 | |
| > tok2vec = Tok2Vec(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#create_pipe).
 | |
| 
 | |
| | Name    | Type                                       | Description                                                                                 |
 | |
| | ------- | ------------------------------------------ | ------------------------------------------------------------------------------------------- |
 | |
| | `vocab` | `Vocab`                                    | The shared vocabulary.                                                                      |
 | |
| | `model` | [`Model`](https://thinc.ai/docs/api-model) | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component.       |
 | |
| | `name`  | str                                        | String name of the component instance. Used to add entries to the `losses` during training. |
 | |
| 
 | |
| ## Tok2Vec.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/tok2vec#call) and [`pipe`](/api/tok2vec#pipe) delegate to the
 | |
| [`predict`](/api/tok2vec#predict) and
 | |
| [`set_annotations`](/api/tok2vec#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > # This usually happens under the hood
 | |
| > processed = tok2vec(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Type  | Description              |
 | |
| | ----------- | ----- | ------------------------ |
 | |
| | `doc`       | `Doc` | The document to process. |
 | |
| | **RETURNS** | `Doc` | The processed document.  |
 | |
| 
 | |
| ## Tok2Vec.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/tok2vec#call) and
 | |
| [`pipe`](/api/tok2vec#pipe) delegate to the [`predict`](/api/tok2vec#predict)
 | |
| and [`set_annotations`](/api/tok2vec#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > for doc in tok2vec.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Type            | Description                                           |
 | |
| | -------------- | --------------- | ----------------------------------------------------- |
 | |
| | `stream`       | `Iterable[Doc]` | A stream of documents.                                |
 | |
| | _keyword-only_ |                 |                                                       |
 | |
| | `batch_size`   | int             | The number of documents to buffer. Defaults to `128`. |
 | |
| | **YIELDS**     | `Doc`           | The processed documents in order.                     |
 | |
| 
 | |
| ## Tok2Vec.begin_training {#begin_training tag="method"}
 | |
| 
 | |
| Initialize the pipe for training, using data examples if available. Return an
 | |
| [`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > optimizer = tok2vec.begin_training(pipeline=nlp.pipeline)
 | |
| > ```
 | |
| 
 | |
| | Name           | Type                                                | Description                                                                                                |
 | |
| | -------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | `Callable[[], Iterable[Example]]`                   | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. |
 | |
| | _keyword-only_ |                                                     |                                                                                                            |
 | |
| | `pipeline`     | `List[Tuple[str, Callable]]`                        | Optional list of pipeline components that this component is part of.                                       |
 | |
| | `sgd`          | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/tok2vec#create_optimizer) if not set. |
 | |
| | **RETURNS**    | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer.                                                                                             |
 | |
| 
 | |
| ## Tok2Vec.predict {#predict tag="method"}
 | |
| 
 | |
| Apply the pipeline's model to a batch of docs, without modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > scores = tok2vec.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Type            | Description                               |
 | |
| | ----------- | --------------- | ----------------------------------------- |
 | |
| | `docs`      | `Iterable[Doc]` | The documents to predict.                 |
 | |
| | **RETURNS** | -               | The model's prediction for each document. |
 | |
| 
 | |
| ## Tok2Vec.set_annotations {#set_annotations tag="method"}
 | |
| 
 | |
| Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > scores = tok2vec.predict(docs)
 | |
| > tok2vec.set_annotations(docs, scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Type            | Description                                       |
 | |
| | -------- | --------------- | ------------------------------------------------- |
 | |
| | `docs`   | `Iterable[Doc]` | The documents to modify.                          |
 | |
| | `scores` | -               | The scores to set, produced by `Tok2Vec.predict`. |
 | |
| 
 | |
| ## Tok2Vec.update {#update tag="method"}
 | |
| 
 | |
| Learn from a batch of documents and gold-standard information, updating the
 | |
| pipe's model. Delegates to [`predict`](/api/tok2vec#predict).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > optimizer = nlp.begin_training()
 | |
| > losses = tok2vec.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name              | Type                                                | Description                                                                                                                           |
 | |
| | ----------------- | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `examples`        | `Iterable[Example]`                                 | A batch of [`Example`](/api/example) objects to learn from.                                                                           |
 | |
| | _keyword-only_    |                                                     |                                                                                                                                       |
 | |
| | `drop`            | float                                               | The dropout rate.                                                                                                                     |
 | |
| | `set_annotations` | bool                                                | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/tok2vec#set_annotations). |
 | |
| | `sgd`             | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer.                                                                                                                        |
 | |
| | `losses`          | `Dict[str, float]`                                  | Optional record of the loss during training. Updated using the component name as the key.                                             |
 | |
| | **RETURNS**       | `Dict[str, float]`                                  | The updated `losses` dictionary.                                                                                                      |
 | |
| 
 | |
| ## Tok2Vec.create_optimizer {#create_optimizer tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > optimizer = tok2vec.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Type                                                | Description    |
 | |
| | ----------- | --------------------------------------------------- | -------------- |
 | |
| | **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
 | |
| 
 | |
| ## Tok2Vec.use_params {#use_params tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model, to use the given parameter values. At the end of the
 | |
| context, the original parameters are restored.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > with tok2vec.use_params(optimizer.averages):
 | |
| >     tok2vec.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Type | Description                               |
 | |
| | -------- | ---- | ----------------------------------------- |
 | |
| | `params` | dict | The parameter values to use in the model. |
 | |
| 
 | |
| ## Tok2Vec.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > tok2vec.to_disk("/path/to/tok2vec")
 | |
| > ```
 | |
| 
 | |
| | Name      | Type            | Description                                                                                                           |
 | |
| | --------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
 | |
| | `path`    | str / `Path`    | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | |
| | `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | |
| 
 | |
| ## Tok2Vec.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > tok2vec.from_disk("/path/to/tok2vec")
 | |
| > ```
 | |
| 
 | |
| | Name        | Type            | Description                                                                |
 | |
| | ----------- | --------------- | -------------------------------------------------------------------------- |
 | |
| | `path`      | str / `Path`    | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | |
| | `exclude`   | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude.  |
 | |
| | **RETURNS** | `Tok2Vec`       | The modified `Tok2Vec` object.                                             |
 | |
| 
 | |
| ## Tok2Vec.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > tok2vec_bytes = tok2vec.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name        | Type            | Description                                                               |
 | |
| | ----------- | --------------- | ------------------------------------------------------------------------- |
 | |
| | `exclude`   | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
 | |
| | **RETURNS** | bytes           | The serialized form of the `Tok2Vec` object.                              |
 | |
| 
 | |
| ## Tok2Vec.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec_bytes = tok2vec.to_bytes()
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > tok2vec.from_bytes(tok2vec_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name         | Type            | Description                                                               |
 | |
| | ------------ | --------------- | ------------------------------------------------------------------------- |
 | |
| | `bytes_data` | bytes           | The data to load from.                                                    |
 | |
| | `exclude`    | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
 | |
| | **RETURNS**  | `Tok2Vec`       | The `Tok2Vec` object.                                                     |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = tok2vec.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 |