mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
569cc98982
* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
320 lines
10 KiB
Python
320 lines
10 KiB
Python
import pytest
|
|
from spacy.lang.en import English
|
|
|
|
from spacy.pipeline import EntityRecognizer, EntityRuler
|
|
from spacy.vocab import Vocab
|
|
from spacy.syntax.ner import BiluoPushDown
|
|
from spacy.gold import GoldParse
|
|
from spacy.tokens import Doc
|
|
|
|
TRAIN_DATA = [
|
|
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
|
("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def vocab():
|
|
return Vocab()
|
|
|
|
|
|
@pytest.fixture
|
|
def doc(vocab):
|
|
return Doc(vocab, words=["Casey", "went", "to", "New", "York", "."])
|
|
|
|
|
|
@pytest.fixture
|
|
def entity_annots(doc):
|
|
casey = doc[0:1]
|
|
ny = doc[3:5]
|
|
return [
|
|
(casey.start_char, casey.end_char, "PERSON"),
|
|
(ny.start_char, ny.end_char, "GPE"),
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def entity_types(entity_annots):
|
|
return sorted(set([label for (s, e, label) in entity_annots]))
|
|
|
|
|
|
@pytest.fixture
|
|
def tsys(vocab, entity_types):
|
|
actions = BiluoPushDown.get_actions(entity_types=entity_types)
|
|
return BiluoPushDown(vocab.strings, actions)
|
|
|
|
|
|
def test_get_oracle_moves(tsys, doc, entity_annots):
|
|
gold = GoldParse(doc, entities=entity_annots)
|
|
tsys.preprocess_gold(gold)
|
|
act_classes = tsys.get_oracle_sequence(doc, gold)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"]
|
|
|
|
|
|
def test_get_oracle_moves_negative_entities(tsys, doc, entity_annots):
|
|
entity_annots = [(s, e, "!" + label) for s, e, label in entity_annots]
|
|
gold = GoldParse(doc, entities=entity_annots)
|
|
for i, tag in enumerate(gold.ner):
|
|
if tag == "L-!GPE":
|
|
gold.ner[i] = "-"
|
|
tsys.preprocess_gold(gold)
|
|
act_classes = tsys.get_oracle_sequence(doc, gold)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names
|
|
|
|
|
|
def test_get_oracle_moves_negative_entities2(tsys, vocab):
|
|
doc = Doc(vocab, words=["A", "B", "C", "D"])
|
|
gold = GoldParse(doc, entities=[])
|
|
gold.ner = ["B-!PERSON", "L-!PERSON", "B-!PERSON", "L-!PERSON"]
|
|
tsys.preprocess_gold(gold)
|
|
act_classes = tsys.get_oracle_sequence(doc, gold)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names
|
|
|
|
|
|
def test_get_oracle_moves_negative_O(tsys, vocab):
|
|
doc = Doc(vocab, words=["A", "B", "C", "D"])
|
|
gold = GoldParse(doc, entities=[])
|
|
gold.ner = ["O", "!O", "O", "!O"]
|
|
tsys.preprocess_gold(gold)
|
|
act_classes = tsys.get_oracle_sequence(doc, gold)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names
|
|
|
|
|
|
def test_oracle_moves_missing_B(en_vocab):
|
|
words = ["B", "52", "Bomber"]
|
|
biluo_tags = [None, None, "L-PRODUCT"]
|
|
|
|
doc = Doc(en_vocab, words=words)
|
|
gold = GoldParse(doc, words=words, entities=biluo_tags)
|
|
|
|
moves = BiluoPushDown(en_vocab.strings)
|
|
move_types = ("M", "B", "I", "L", "U", "O")
|
|
for tag in biluo_tags:
|
|
if tag is None:
|
|
continue
|
|
elif tag == "O":
|
|
moves.add_action(move_types.index("O"), "")
|
|
else:
|
|
action, label = tag.split("-")
|
|
moves.add_action(move_types.index("B"), label)
|
|
moves.add_action(move_types.index("I"), label)
|
|
moves.add_action(move_types.index("L"), label)
|
|
moves.add_action(move_types.index("U"), label)
|
|
moves.preprocess_gold(gold)
|
|
moves.get_oracle_sequence(doc, gold)
|
|
|
|
|
|
def test_oracle_moves_whitespace(en_vocab):
|
|
words = ["production", "\n", "of", "Northrop", "\n", "Corp.", "\n", "'s", "radar"]
|
|
biluo_tags = ["O", "O", "O", "B-ORG", None, "I-ORG", "L-ORG", "O", "O"]
|
|
|
|
doc = Doc(en_vocab, words=words)
|
|
gold = GoldParse(doc, words=words, entities=biluo_tags)
|
|
|
|
moves = BiluoPushDown(en_vocab.strings)
|
|
move_types = ("M", "B", "I", "L", "U", "O")
|
|
for tag in biluo_tags:
|
|
if tag is None:
|
|
continue
|
|
elif tag == "O":
|
|
moves.add_action(move_types.index("O"), "")
|
|
else:
|
|
action, label = tag.split("-")
|
|
moves.add_action(move_types.index(action), label)
|
|
moves.preprocess_gold(gold)
|
|
moves.get_oracle_sequence(doc, gold)
|
|
|
|
|
|
def test_accept_blocked_token():
|
|
"""Test succesful blocking of tokens to be in an entity."""
|
|
# 1. test normal behaviour
|
|
nlp1 = English()
|
|
doc1 = nlp1("I live in New York")
|
|
ner1 = EntityRecognizer(doc1.vocab)
|
|
assert [token.ent_iob_ for token in doc1] == ["", "", "", "", ""]
|
|
assert [token.ent_type_ for token in doc1] == ["", "", "", "", ""]
|
|
|
|
# Add the OUT action
|
|
ner1.moves.add_action(5, "")
|
|
ner1.add_label("GPE")
|
|
# Get into the state just before "New"
|
|
state1 = ner1.moves.init_batch([doc1])[0]
|
|
ner1.moves.apply_transition(state1, "O")
|
|
ner1.moves.apply_transition(state1, "O")
|
|
ner1.moves.apply_transition(state1, "O")
|
|
# Check that B-GPE is valid.
|
|
assert ner1.moves.is_valid(state1, "B-GPE")
|
|
|
|
# 2. test blocking behaviour
|
|
nlp2 = English()
|
|
doc2 = nlp2("I live in New York")
|
|
ner2 = EntityRecognizer(doc2.vocab)
|
|
|
|
# set "New York" to a blocked entity
|
|
doc2.ents = [(0, 3, 5)]
|
|
assert [token.ent_iob_ for token in doc2] == ["", "", "", "B", "B"]
|
|
assert [token.ent_type_ for token in doc2] == ["", "", "", "", ""]
|
|
|
|
# Check that B-GPE is now invalid.
|
|
ner2.moves.add_action(4, "")
|
|
ner2.moves.add_action(5, "")
|
|
ner2.add_label("GPE")
|
|
state2 = ner2.moves.init_batch([doc2])[0]
|
|
ner2.moves.apply_transition(state2, "O")
|
|
ner2.moves.apply_transition(state2, "O")
|
|
ner2.moves.apply_transition(state2, "O")
|
|
# we can only use U- for "New"
|
|
assert not ner2.moves.is_valid(state2, "B-GPE")
|
|
assert ner2.moves.is_valid(state2, "U-")
|
|
ner2.moves.apply_transition(state2, "U-")
|
|
# we can only use U- for "York"
|
|
assert not ner2.moves.is_valid(state2, "B-GPE")
|
|
assert ner2.moves.is_valid(state2, "U-")
|
|
|
|
|
|
def test_overwrite_token():
|
|
nlp = English()
|
|
ner1 = nlp.create_pipe("ner")
|
|
nlp.add_pipe(ner1, name="ner")
|
|
nlp.begin_training()
|
|
|
|
# The untrained NER will predict O for each token
|
|
doc = nlp("I live in New York")
|
|
assert [token.ent_iob_ for token in doc] == ["O", "O", "O", "O", "O"]
|
|
assert [token.ent_type_ for token in doc] == ["", "", "", "", ""]
|
|
|
|
# Check that a new ner can overwrite O
|
|
ner2 = EntityRecognizer(doc.vocab)
|
|
ner2.moves.add_action(5, "")
|
|
ner2.add_label("GPE")
|
|
state = ner2.moves.init_batch([doc])[0]
|
|
assert ner2.moves.is_valid(state, "B-GPE")
|
|
assert ner2.moves.is_valid(state, "U-GPE")
|
|
ner2.moves.apply_transition(state, "B-GPE")
|
|
assert ner2.moves.is_valid(state, "I-GPE")
|
|
assert ner2.moves.is_valid(state, "L-GPE")
|
|
|
|
|
|
def test_ruler_before_ner():
|
|
""" Test that an NER works after an entity_ruler: the second can add annotations """
|
|
nlp = English()
|
|
|
|
# 1 : Entity Ruler - should set "this" to B and everything else to empty
|
|
ruler = EntityRuler(nlp)
|
|
patterns = [{"label": "THING", "pattern": "This"}]
|
|
ruler.add_patterns(patterns)
|
|
nlp.add_pipe(ruler)
|
|
|
|
# 2: untrained NER - should set everything else to O
|
|
untrained_ner = nlp.create_pipe("ner")
|
|
untrained_ner.add_label("MY_LABEL")
|
|
nlp.add_pipe(untrained_ner)
|
|
nlp.begin_training()
|
|
|
|
doc = nlp("This is Antti Korhonen speaking in Finland")
|
|
expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
|
|
expected_types = ["THING", "", "", "", "", "", ""]
|
|
assert [token.ent_iob_ for token in doc] == expected_iobs
|
|
assert [token.ent_type_ for token in doc] == expected_types
|
|
|
|
|
|
def test_ner_before_ruler():
|
|
""" Test that an entity_ruler works after an NER: the second can overwrite O annotations """
|
|
nlp = English()
|
|
|
|
# 1: untrained NER - should set everything to O
|
|
untrained_ner = nlp.create_pipe("ner")
|
|
untrained_ner.add_label("MY_LABEL")
|
|
nlp.add_pipe(untrained_ner, name="uner")
|
|
nlp.begin_training()
|
|
|
|
# 2 : Entity Ruler - should set "this" to B and keep everything else O
|
|
ruler = EntityRuler(nlp)
|
|
patterns = [{"label": "THING", "pattern": "This"}]
|
|
ruler.add_patterns(patterns)
|
|
nlp.add_pipe(ruler)
|
|
|
|
doc = nlp("This is Antti Korhonen speaking in Finland")
|
|
expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
|
|
expected_types = ["THING", "", "", "", "", "", ""]
|
|
assert [token.ent_iob_ for token in doc] == expected_iobs
|
|
assert [token.ent_type_ for token in doc] == expected_types
|
|
|
|
|
|
def test_block_ner():
|
|
""" Test functionality for blocking tokens so they can't be in a named entity """
|
|
# block "Antti L Korhonen" from being a named entity
|
|
nlp = English()
|
|
nlp.add_pipe(BlockerComponent1(2, 5))
|
|
untrained_ner = nlp.create_pipe("ner")
|
|
untrained_ner.add_label("MY_LABEL")
|
|
nlp.add_pipe(untrained_ner, name="uner")
|
|
nlp.begin_training()
|
|
doc = nlp("This is Antti L Korhonen speaking in Finland")
|
|
expected_iobs = ["O", "O", "B", "B", "B", "O", "O", "O"]
|
|
expected_types = ["", "", "", "", "", "", "", ""]
|
|
assert [token.ent_iob_ for token in doc] == expected_iobs
|
|
assert [token.ent_type_ for token in doc] == expected_types
|
|
|
|
|
|
def test_change_number_features():
|
|
# Test the default number features
|
|
nlp = English()
|
|
ner = nlp.create_pipe("ner")
|
|
nlp.add_pipe(ner)
|
|
ner.add_label("PERSON")
|
|
nlp.begin_training()
|
|
assert ner.model.lower.get_dim("nF") == ner.nr_feature
|
|
# Test we can change it
|
|
nlp = English()
|
|
ner = nlp.create_pipe("ner")
|
|
nlp.add_pipe(ner)
|
|
ner.add_label("PERSON")
|
|
nlp.begin_training(
|
|
component_cfg={"ner": {"nr_feature_tokens": 3, "token_vector_width": 128}}
|
|
)
|
|
assert ner.model.lower.get_dim("nF") == 3
|
|
# Test the model runs
|
|
nlp("hello world")
|
|
|
|
|
|
def test_overfitting():
|
|
# Simple test to try and quickly overfit the NER component - ensuring the ML models work correctly
|
|
nlp = English()
|
|
ner = nlp.create_pipe("ner")
|
|
for _, annotations in TRAIN_DATA:
|
|
for ent in annotations.get("entities"):
|
|
ner.add_label(ent[2])
|
|
nlp.add_pipe(ner)
|
|
optimizer = nlp.begin_training()
|
|
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
|
|
assert losses["ner"] < 0.00001
|
|
|
|
# test the trained model
|
|
test_text = "I like London."
|
|
doc = nlp(test_text)
|
|
ents = doc.ents
|
|
|
|
assert len(ents) == 1
|
|
assert ents[0].text == "London"
|
|
assert ents[0].label_ == "LOC"
|
|
|
|
|
|
class BlockerComponent1(object):
|
|
name = "my_blocker"
|
|
|
|
def __init__(self, start, end):
|
|
self.start = start
|
|
self.end = end
|
|
|
|
def __call__(self, doc):
|
|
doc.ents = [(0, self.start, self.end)]
|
|
return doc
|