spaCy/bin/wiki_entity_linking/train_descriptions.py
Sofie Van Landeghem 06f0a8daa0
Default settings to configurations (#4995)
* fix grad_clip naming

* cleaning up pretrained_vectors out of cfg

* further refactoring Model init's

* move Model building out of pipes

* further refactor to require a model config when creating a pipe

* small fixes

* making cfg in nn_parser more consistent

* fixing nr_class for parser

* fixing nn_parser's nO

* fix printing of loss

* architectures in own file per type, consistent naming

* convenience methods default_tagger_config and default_tok2vec_config

* let create_pipe access default config if available for that component

* default_parser_config

* move defaults to separate folder

* allow reading nlp from package or dir with argument 'name'

* architecture spacy.VocabVectors.v1 to read static vectors from file

* cleanup

* default configs for nel, textcat, morphologizer, tensorizer

* fix imports

* fixing unit tests

* fixes and clean up

* fixing defaults, nO, fix unit tests

* restore parser IO

* fix IO

* 'fix' serialization test

* add *.cfg to manifest

* fix example configs with additional arguments

* replace Morpohologizer with Tagger

* add IO bit when testing overfitting of tagger (currently failing)

* fix IO - don't initialize when reading from disk

* expand overfitting tests to also check IO goes OK

* remove dropout from HashEmbed to fix Tagger performance

* add defaults for sentrec

* update thinc

* always pass a Model instance to a Pipe

* fix piped_added statement

* remove obsolete W029

* remove obsolete errors

* restore byte checking tests (work again)

* clean up test

* further test cleanup

* convert from config to Model in create_pipe

* bring back error when component is not initialized

* cleanup

* remove calls for nlp2.begin_training

* use thinc.api in imports

* allow setting charembed's nM and nC

* fix for hardcoded nM/nC + unit test

* formatting fixes

* trigger build
2020-02-27 18:42:27 +01:00

146 lines
4.9 KiB
Python

from random import shuffle
import logging
import numpy as np
from thinc.api import Model, chain, CosineDistance, Linear
from spacy.util import create_default_optimizer
logger = logging.getLogger(__name__)
class EntityEncoder:
"""
Train the embeddings of entity descriptions to fit a fixed-size entity vector (e.g. 64D).
This entity vector will be stored in the KB, for further downstream use in the entity model.
"""
DROP = 0
BATCH_SIZE = 1000
# Set min. acceptable loss to avoid a 'mean of empty slice' warning by numpy
MIN_LOSS = 0.01
# Reasonable default to stop training when things are not improving
MAX_NO_IMPROVEMENT = 20
def __init__(self, nlp, input_dim, desc_width, epochs=5):
self.nlp = nlp
self.input_dim = input_dim
self.desc_width = desc_width
self.epochs = epochs
self.distance = CosineDistance(ignore_zeros=True, normalize=False)
def apply_encoder(self, description_list):
if self.encoder is None:
raise ValueError("Can not apply encoder before training it")
batch_size = 100000
start = 0
stop = min(batch_size, len(description_list))
encodings = []
while start < len(description_list):
docs = list(self.nlp.pipe(description_list[start:stop]))
doc_embeddings = [self._get_doc_embedding(doc) for doc in docs]
enc = self.encoder(np.asarray(doc_embeddings))
encodings.extend(enc.tolist())
start = start + batch_size
stop = min(stop + batch_size, len(description_list))
logger.info("Encoded: {} entities".format(stop))
return encodings
def train(self, description_list, to_print=False):
processed, loss = self._train_model(description_list)
if to_print:
logger.info(
"Trained entity descriptions on {} ".format(processed) +
"(non-unique) descriptions across {} ".format(self.epochs) +
"epochs"
)
logger.info("Final loss: {}".format(loss))
def _train_model(self, description_list):
best_loss = 1.0
iter_since_best = 0
self._build_network(self.input_dim, self.desc_width)
processed = 0
loss = 1
# copy this list so that shuffling does not affect other functions
descriptions = description_list.copy()
to_continue = True
for i in range(self.epochs):
shuffle(descriptions)
batch_nr = 0
start = 0
stop = min(self.BATCH_SIZE, len(descriptions))
while to_continue and start < len(descriptions):
batch = []
for descr in descriptions[start:stop]:
doc = self.nlp(descr)
doc_vector = self._get_doc_embedding(doc)
batch.append(doc_vector)
loss = self._update(batch)
if batch_nr % 25 == 0:
logger.info("loss: {} ".format(loss))
processed += len(batch)
# in general, continue training if we haven't reached our ideal min yet
to_continue = loss > self.MIN_LOSS
# store the best loss and track how long it's been
if loss < best_loss:
best_loss = loss
iter_since_best = 0
else:
iter_since_best += 1
# stop learning if we haven't seen improvement since the last few iterations
if iter_since_best > self.MAX_NO_IMPROVEMENT:
to_continue = False
batch_nr += 1
start = start + self.BATCH_SIZE
stop = min(stop + self.BATCH_SIZE, len(descriptions))
return processed, loss
@staticmethod
def _get_doc_embedding(doc):
indices = np.zeros((len(doc),), dtype="i")
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
word_vectors = doc.vocab.vectors.data[indices]
doc_vector = np.mean(word_vectors, axis=0)
return doc_vector
def _build_network(self, orig_width, hidden_with):
with Model.define_operators({">>": chain}):
# very simple encoder-decoder model
self.encoder = Linear(hidden_with, orig_width)
# TODO: removed the zero_init here - is oK?
self.model = self.encoder >> Linear(orig_width, hidden_with)
self.sgd = create_default_optimizer()
def _update(self, vectors):
truths = self.model.ops.asarray(vectors)
predictions, bp_model = self.model.begin_update(
truths, drop=self.DROP
)
d_scores, loss = self.distance(predictions, truths)
bp_model(d_scores, sgd=self.sgd)
return loss / len(vectors)