mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 10:26:35 +03:00
498 lines
22 KiB
Markdown
498 lines
22 KiB
Markdown
---
|
||
title: TrainablePipe
|
||
tag: class
|
||
teaser: Base class for trainable pipeline components
|
||
---
|
||
|
||
This class is a base class and **not instantiated directly**. Trainable pipeline
|
||
components like the [`EntityRecognizer`](/api/entityrecognizer) or
|
||
[`TextCategorizer`](/api/textcategorizer) inherit from it and it defines the
|
||
interface that components should follow to function as trainable components in a
|
||
spaCy pipeline. See the docs on
|
||
[writing trainable components](/usage/processing-pipelines#trainable-components)
|
||
for how to use the `TrainablePipe` base class to implement custom components.
|
||
|
||
<!-- TODO: Pipe vs TrainablePipe, check methods below (all renamed to TrainablePipe for now) -->
|
||
|
||
> #### Why is it implemented in Cython?
|
||
>
|
||
> The `TrainablePipe` class is implemented in a `.pyx` module, the extension
|
||
> used by [Cython](/api/cython). This is needed so that **other** Cython
|
||
> classes, like the [`EntityRecognizer`](/api/entityrecognizer) can inherit from
|
||
> it. But it doesn't mean you have to implement trainable components in Cython –
|
||
> pure Python components like the [`TextCategorizer`](/api/textcategorizer) can
|
||
> also inherit from `TrainablePipe`.
|
||
|
||
```python
|
||
%%GITHUB_SPACY/spacy/pipeline/trainable_pipe.pyx
|
||
```
|
||
|
||
## TrainablePipe.\_\_init\_\_ {#init tag="method"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.pipeline import TrainablePipe
|
||
> from spacy.language import Language
|
||
>
|
||
> class CustomPipe(TrainablePipe):
|
||
> ...
|
||
>
|
||
> @Language.factory("your_custom_pipe", default_config={"model": MODEL})
|
||
> def make_custom_pipe(nlp, name, model):
|
||
> return CustomPipe(nlp.vocab, model, name)
|
||
> ```
|
||
|
||
Create a new pipeline instance. In your application, you would normally use a
|
||
shortcut for this and instantiate the component using its string name and
|
||
[`nlp.add_pipe`](/api/language#create_pipe).
|
||
|
||
| Name | Description |
|
||
| ------- | -------------------------------------------------------------------------------------------------------------------------- |
|
||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], Any]~~ |
|
||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||
| `**cfg` | Additional config parameters and settings. Will be available as the dictionary `cfg` and is serialized with the component. |
|
||
|
||
## TrainablePipe.\_\_call\_\_ {#call tag="method"}
|
||
|
||
Apply the pipe to one document. The document is modified in place, and returned.
|
||
This usually happens under the hood when the `nlp` object is called on a text
|
||
and all pipeline components are applied to the `Doc` in order. Both
|
||
[`__call__`](/api/pipe#call) and [`pipe`](/api/pipe#pipe) delegate to the
|
||
[`predict`](/api/pipe#predict) and
|
||
[`set_annotations`](/api/pipe#set_annotations) methods.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("This is a sentence.")
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> # This usually happens under the hood
|
||
> processed = pipe(doc)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------- |
|
||
| `doc` | The document to process. ~~Doc~~ |
|
||
| **RETURNS** | The processed document. ~~Doc~~ |
|
||
|
||
## TrainablePipe.pipe {#pipe tag="method"}
|
||
|
||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||
when the `nlp` object is called on a text and all pipeline components are
|
||
applied to the `Doc` in order. Both [`__call__`](/api/pipe#call) and
|
||
[`pipe`](/api/pipe#pipe) delegate to the [`predict`](/api/pipe#predict) and
|
||
[`set_annotations`](/api/pipe#set_annotations) methods.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> for doc in pipe.pipe(docs, batch_size=50):
|
||
> pass
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------- |
|
||
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
||
| _keyword-only_ | |
|
||
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||
|
||
## TrainablePipe.initialize {#initialize tag="method" new="3"}
|
||
|
||
Initialize the component for training. `get_examples` should be a function that
|
||
returns an iterable of [`Example`](/api/example) objects. The data examples are
|
||
used to **initialize the model** of the component and can either be the full
|
||
training data or a representative sample. Initialization includes validating the
|
||
network,
|
||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||
setting up the label scheme based on the data. This method is typically called
|
||
by [`Language.initialize`](/api/language#initialize).
|
||
|
||
<Infobox variant="warning" title="Changed in v3.0" id="begin_training">
|
||
|
||
This method was previously called `begin_training`.
|
||
|
||
</Infobox>
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe.initialize(lambda: [], pipeline=nlp.pipeline)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
|
||
| _keyword-only_ | |
|
||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||
|
||
## TrainablePipe.predict {#predict tag="method"}
|
||
|
||
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||
modifying them.
|
||
|
||
<Infobox variant="danger">
|
||
|
||
This method needs to be overwritten with your own custom `predict` method.
|
||
|
||
</Infobox>
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> scores = pipe.predict([doc1, doc2])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------- |
|
||
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
||
| **RETURNS** | The model's prediction for each document. |
|
||
|
||
## TrainablePipe.set_annotations {#set_annotations tag="method"}
|
||
|
||
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||
|
||
<Infobox variant="danger">
|
||
|
||
This method needs to be overwritten with your own custom `set_annotations`
|
||
method.
|
||
|
||
</Infobox>
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> scores = pipe.predict(docs)
|
||
> pipe.set_annotations(docs, scores)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------- | ------------------------------------------------ |
|
||
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||
| `scores` | The scores to set, produced by `Tagger.predict`. |
|
||
|
||
## TrainablePipe.update {#update tag="method"}
|
||
|
||
Learn from a batch of [`Example`](/api/example) objects containing the
|
||
predictions and gold-standard annotations, and update the component's model.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> optimizer = nlp.initialize()
|
||
> losses = pipe.update(examples, sgd=optimizer)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||
| _keyword-only_ | |
|
||
| `drop` | The dropout rate. ~~float~~ |
|
||
| `set_annotations` | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](#set_annotations). ~~bool~~ |
|
||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||
|
||
## TrainablePipe.rehearse {#rehearse tag="method,experimental" new="3"}
|
||
|
||
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
|
||
current model to make predictions similar to an initial model, to try to address
|
||
the "catastrophic forgetting" problem. This feature is experimental.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> optimizer = nlp.resume_training()
|
||
> losses = pipe.rehearse(examples, sgd=optimizer)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||
| _keyword-only_ | |
|
||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||
|
||
## TrainablePipe.get_loss {#get_loss tag="method"}
|
||
|
||
Find the loss and gradient of loss for the batch of documents and their
|
||
predicted scores.
|
||
|
||
<Infobox variant="danger">
|
||
|
||
This method needs to be overwritten with your own custom `get_loss` method.
|
||
|
||
</Infobox>
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> ner = nlp.add_pipe("ner")
|
||
> scores = ner.predict([eg.predicted for eg in examples])
|
||
> loss, d_loss = ner.get_loss(examples, scores)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------------------------------------- |
|
||
| `examples` | The batch of examples. ~~Iterable[Example]~~ |
|
||
| `scores` | Scores representing the model's predictions. |
|
||
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
|
||
|
||
## TrainablePipe.score {#score tag="method" new="3"}
|
||
|
||
Score a batch of examples.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> scores = pipe.score(examples)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------------------------------------------------------------------- |
|
||
| `examples` | The examples to score. ~~Iterable[Example]~~ |
|
||
| **RETURNS** | The scores, e.g. produced by the [`Scorer`](/api/scorer). ~~Dict[str, Union[float, Dict[str, float]]]~~ |
|
||
|
||
## TrainablePipe.create_optimizer {#create_optimizer tag="method"}
|
||
|
||
Create an optimizer for the pipeline component. Defaults to
|
||
[`Adam`](https://thinc.ai/docs/api-optimizers#adam) with default settings.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> optimizer = pipe.create_optimizer()
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ---------------------------- |
|
||
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
||
|
||
## TrainablePipe.use_params {#use_params tag="method, contextmanager"}
|
||
|
||
Modify the pipe's model, to use the given parameter values. At the end of the
|
||
context, the original parameters are restored.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> with pipe.use_params(optimizer.averages):
|
||
> pipe.to_disk("/best_model")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------- | -------------------------------------------------- |
|
||
| `params` | The parameter values to use in the model. ~~dict~~ |
|
||
|
||
## TrainablePipe.finish_update {#finish_update tag="method"}
|
||
|
||
Update parameters using the current parameter gradients. Defaults to calling
|
||
[`self.model.finish_update`](https://thinc.ai/docs/api-model#finish_update).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> optimizer = nlp.initialize()
|
||
> losses = pipe.update(examples, sgd=None)
|
||
> pipe.finish_update(sgd)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----- | ------------------------------------- |
|
||
| `sgd` | An optimizer. ~~Optional[Optimizer]~~ |
|
||
|
||
## TrainablePipe.add_label {#add_label tag="method"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe.add_label("MY_LABEL")
|
||
> ```
|
||
|
||
Add a new label to the pipe, to be predicted by the model. The actual
|
||
implementation depends on the specific component, but in general `add_label`
|
||
shouldn't be called if the output dimension is already set, or if the model has
|
||
already been fully [initialized](#initialize). If these conditions are violated,
|
||
the function will raise an Error. The exception to this rule is when the
|
||
component is [resizable](#is_resizable), in which case
|
||
[`set_output`](#set_output) should be called to ensure that the model is
|
||
properly resized.
|
||
|
||
<Infobox variant="danger">
|
||
|
||
This method needs to be overwritten with your own custom `add_label` method.
|
||
|
||
</Infobox>
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------------------- |
|
||
| `label` | The label to add. ~~str~~ |
|
||
| **RETURNS** | 0 if the label is already present, otherwise 1. ~~int~~ |
|
||
|
||
Note that in general, you don't have to call `pipe.add_label` if you provide a
|
||
representative data sample to the [`initialize`](#initialize) method. In this
|
||
case, all labels found in the sample will be automatically added to the model,
|
||
and the output dimension will be
|
||
[inferred](/usage/layers-architectures#thinc-shape-inference) automatically.
|
||
|
||
## TrainablePipe.is_resizable {#is_resizable tag="property"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> can_resize = pipe.is_resizable
|
||
> ```
|
||
>
|
||
> With custom resizing implemented by a component:
|
||
>
|
||
> ```python
|
||
> def custom_resize(model, new_nO):
|
||
> # adjust model
|
||
> return model
|
||
>
|
||
> custom_model.attrs["resize_output"] = custom_resize
|
||
> ```
|
||
|
||
Check whether or not the output dimension of the component's model can be
|
||
resized. If this method returns `True`, [`set_output`](#set_output) can be
|
||
called to change the model's output dimension.
|
||
|
||
For built-in components that are not resizable, you have to create and train a
|
||
new model from scratch with the appropriate architecture and output dimension.
|
||
For custom components, you can implement a `resize_output` function and add it
|
||
as an attribute to the component's model.
|
||
|
||
| Name | Description |
|
||
| ----------- | ---------------------------------------------------------------------------------------------- |
|
||
| **RETURNS** | Whether or not the output dimension of the model can be changed after initialization. ~~bool~~ |
|
||
|
||
## TrainablePipe.set_output {#set_output tag="method"}
|
||
|
||
Change the output dimension of the component's model. If the component is not
|
||
[resizable](#is_resizable), this method will raise a `NotImplementedError`. If a
|
||
component is resizable, the model's attribute `resize_output` will be called.
|
||
This is a function that takes the original model and the new output dimension
|
||
`nO`, and changes the model in place. When resizing an already trained model,
|
||
care should be taken to avoid the "catastrophic forgetting" problem.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> if pipe.is_resizable:
|
||
> pipe.set_output(512)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---- | --------------------------------- |
|
||
| `nO` | The new output dimension. ~~int~~ |
|
||
|
||
## TrainablePipe.to_disk {#to_disk tag="method"}
|
||
|
||
Serialize the pipe to disk.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe.to_disk("/path/to/pipe")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
|
||
## TrainablePipe.from_disk {#from_disk tag="method"}
|
||
|
||
Load the pipe from disk. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe.from_disk("/path/to/pipe")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | The modified pipe. ~~TrainablePipe~~ |
|
||
|
||
## TrainablePipe.to_bytes {#to_bytes tag="method"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe_bytes = pipe.to_bytes()
|
||
> ```
|
||
|
||
Serialize the pipe to a bytestring.
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | The serialized form of the pipe. ~~bytes~~ |
|
||
|
||
## TrainablePipe.from_bytes {#from_bytes tag="method"}
|
||
|
||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe_bytes = pipe.to_bytes()
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe.from_bytes(pipe_bytes)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | The pipe. ~~TrainablePipe~~ |
|
||
|
||
## Attributes {#attributes}
|
||
|
||
| Name | Description |
|
||
| ------- | --------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `vocab` | The shared vocabulary that's passed in on initialization. ~~Vocab~~ |
|
||
| `model` | The model powering the component. ~~Model[List[Doc], Any]~~ |
|
||
| `name` | The name of the component instance in the pipeline. Can be used in the losses. ~~str~~ |
|
||
| `cfg` | Keyword arguments passed to [`TrainablePipe.__init__`](/api/pipe#init). Will be serialized with the component. ~~Dict[str, Any]~~ |
|
||
|
||
## Serialization fields {#serialization-fields}
|
||
|
||
During serialization, spaCy will export several data fields used to restore
|
||
different aspects of the object. If needed, you can exclude them from
|
||
serialization by passing in the string names via the `exclude` argument.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> data = pipe.to_disk("/path")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------- | -------------------------------------------------------------- |
|
||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||
| `model` | The binary model data. You usually don't want to exclude this. |
|