spaCy/website/docs/api/lexeme.md
2020-06-20 15:52:00 +02:00

17 KiB
Raw Blame History

title teaser tag source
Lexeme An entry in the vocabulary class spacy/lexeme.pyx

A Lexeme has no string context it's a word type, as opposed to a word token. It therefore has no part-of-speech tag, dependency parse, or lemma (if lemmatization depends on the part-of-speech tag).

Lexeme.__init__

Create a Lexeme object.

Name Type Description
vocab Vocab The parent vocabulary.
orth int The orth id of the lexeme.
RETURNS Lexeme The newly constructed object.

Lexeme.set_flag

Change the value of a boolean flag.

Example

COOL_FLAG = nlp.vocab.add_flag(lambda text: False)
nlp.vocab["spaCy"].set_flag(COOL_FLAG, True)
Name Type Description
flag_id int The attribute ID of the flag to set.
value bool The new value of the flag.

Lexeme.check_flag

Check the value of a boolean flag.

Example

is_my_library = lambda text: text in ["spaCy", "Thinc"]
MY_LIBRARY = nlp.vocab.add_flag(is_my_library)
assert nlp.vocab["spaCy"].check_flag(MY_LIBRARY) == True
Name Type Description
flag_id int The attribute ID of the flag to query.
RETURNS bool The value of the flag.

Lexeme.similarity

Compute a semantic similarity estimate. Defaults to cosine over vectors.

Example

apple = nlp.vocab["apple"]
orange = nlp.vocab["orange"]
apple_orange = apple.similarity(orange)
orange_apple = orange.similarity(apple)
assert apple_orange == orange_apple
Name Type Description
other - The object to compare with. By default, accepts Doc, Span, Token and Lexeme objects.
RETURNS float A scalar similarity score. Higher is more similar.

Lexeme.has_vector

A boolean value indicating whether a word vector is associated with the lexeme.

Example

apple = nlp.vocab["apple"]
assert apple.has_vector
Name Type Description
RETURNS bool Whether the lexeme has a vector data attached.

Lexeme.vector

A real-valued meaning representation.

Example

apple = nlp.vocab["apple"]
assert apple.vector.dtype == "float32"
assert apple.vector.shape == (300,)
Name Type Description
RETURNS numpy.ndarray[ndim=1, dtype='float32'] A 1D numpy array representing the lexeme's semantics.

Lexeme.vector_norm

The L2 norm of the lexeme's vector representation.

Example

apple = nlp.vocab["apple"]
pasta = nlp.vocab["pasta"]
apple.vector_norm  # 7.1346845626831055
pasta.vector_norm  # 7.759851932525635
assert apple.vector_norm != pasta.vector_norm
Name Type Description
RETURNS float The L2 norm of the vector representation.

Attributes

Name Type Description
vocab Vocab The lexeme's vocabulary.
text str Verbatim text content.
orth int ID of the verbatim text content.
orth_ str Verbatim text content (identical to Lexeme.text). Exists mostly for consistency with the other attributes.
rank int Sequential ID of the lexemes's lexical type, used to index into tables, e.g. for word vectors.
flags int Container of the lexeme's binary flags.
norm int The lexemes's norm, i.e. a normalized form of the lexeme text.
norm_ str The lexemes's norm, i.e. a normalized form of the lexeme text.
lower int Lowercase form of the word.
lower_ str Lowercase form of the word.
shape int Transform of the words's string, to show orthographic features. Alphabetic characters are replaced by x or X, and numeric characters are replaced by d, and sequences of the same character are truncated after length 4. For example,"Xxxx"or"dd"`.
shape_ str Transform of the word's string, to show orthographic features. Alphabetic characters are replaced by x or X, and numeric characters are replaced by d, and sequences of the same character are truncated after length 4. For example,"Xxxx"or"dd"`.
prefix int Length-N substring from the start of the word. Defaults to N=1.
prefix_ str Length-N substring from the start of the word. Defaults to N=1.
suffix int Length-N substring from the end of the word. Defaults to N=3.
suffix_ str Length-N substring from the start of the word. Defaults to N=3.
is_alpha bool Does the lexeme consist of alphabetic characters? Equivalent to lexeme.text.isalpha().
is_ascii bool Does the lexeme consist of ASCII characters? Equivalent to [any(ord(c) >= 128 for c in lexeme.text)].
is_digit bool Does the lexeme consist of digits? Equivalent to lexeme.text.isdigit().
is_lower bool Is the lexeme in lowercase? Equivalent to lexeme.text.islower().
is_upper bool Is the lexeme in uppercase? Equivalent to lexeme.text.isupper().
is_title bool Is the lexeme in titlecase? Equivalent to lexeme.text.istitle().
is_punct bool Is the lexeme punctuation?
is_left_punct bool Is the lexeme a left punctuation mark, e.g. (?
is_right_punct bool Is the lexeme a right punctuation mark, e.g. )?
is_space bool Does the lexeme consist of whitespace characters? Equivalent to lexeme.text.isspace().
is_bracket bool Is the lexeme a bracket?
is_quote bool Is the lexeme a quotation mark?
is_currency 2.0.8 bool Is the lexeme a currency symbol?
like_url bool Does the lexeme resemble a URL?
like_num bool Does the lexeme represent a number? e.g. "10.9", "10", "ten", etc.
like_email bool Does the lexeme resemble an email address?
is_oov bool Does the lexeme have a word vector?
is_stop bool Is the lexeme part of a "stop list"?
lang int Language of the parent vocabulary.
lang_ str Language of the parent vocabulary.
prob float Smoothed log probability estimate of the lexeme's word type (context-independent entry in the vocabulary).
cluster int Brown cluster ID.
sentiment float A scalar value indicating the positivity or negativity of the lexeme.