💫 Industrial-strength Natural Language Processing (NLP) in Python
Go to file
Ines Montani 43b960c01b
Refactor pipeline components, config and language data (#5759)
* Update with WIP

* Update with WIP

* Update with pipeline serialization

* Update types and pipe factories

* Add deep merge, tidy up and add tests

* Fix pipe creation from config

* Don't validate default configs on load

* Update spacy/language.py

Co-authored-by: Ines Montani <ines@ines.io>

* Adjust factory/component meta error

* Clean up factory args and remove defaults

* Add test for failing empty dict defaults

* Update pipeline handling and methods

* provide KB as registry function instead of as object

* small change in test to make functionality more clear

* update example script for EL configuration

* Fix typo

* Simplify test

* Simplify test

* splitting pipes.pyx into separate files

* moving default configs to each component file

* fix batch_size type

* removing default values from component constructors where possible (TODO: test 4725)

* skip instead of xfail

* Add test for config -> nlp with multiple instances

* pipeline.pipes -> pipeline.pipe

* Tidy up, document, remove kwargs

* small cleanup/generalization for Tok2VecListener

* use DEFAULT_UPSTREAM field

* revert to avoid circular imports

* Fix tests

* Replace deprecated arg

* Make model dirs require config

* fix pickling of keyword-only arguments in constructor

* WIP: clean up and integrate full config

* Add helper to handle function args more reliably

Now also includes keyword-only args

* Fix config composition and serialization

* Improve config debugging and add visual diff

* Remove unused defaults and fix type

* Remove pipeline and factories from meta

* Update spacy/default_config.cfg

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/default_config.cfg

* small UX edits

* avoid printing stack trace for debug CLI commands

* Add support for language-specific factories

* specify the section of the config which holds the model to debug

* WIP: add Language.from_config

* Update with language data refactor WIP

* Auto-format

* Add backwards-compat handling for Language.factories

* Update morphologizer.pyx

* Fix morphologizer

* Update and simplify lemmatizers

* Fix Japanese tests

* Port over tagger changes

* Fix Chinese and tests

* Update to latest Thinc

* WIP: xfail first Russian lemmatizer test

* Fix component-specific overrides

* fix nO for output layers in debug_model

* Fix default value

* Fix tests and don't pass objects in config

* Fix deep merging

* Fix lemma lookup data registry

Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)

* Add types

* Add Vocab.from_config

* Fix typo

* Fix tests

* Make config copying more elegant

* Fix pipe analysis

* Fix lemmatizers and is_base_form

* WIP: move language defaults to config

* Fix morphology type

* Fix vocab

* Remove comment

* Update to latest Thinc

* Add morph rules to config

* Tidy up

* Remove set_morphology option from tagger factory

* Hack use_gpu

* Move [pipeline] to top-level block and make [nlp.pipeline] list

Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them

* Fix use_gpu and resume in CLI

* Auto-format

* Remove resume from config

* Fix formatting and error

* [pipeline] -> [components]

* Fix types

* Fix tagger test: requires set_morphology?

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 13:42:59 +02:00
.buildkite Revert "Merge branch 'develop' of https://github.com/explosion/spaCy into develop" 2018-03-27 19:23:02 +02:00
.github Merge branch 'develop' into master-tmp 2020-07-20 14:58:04 +02:00
bin Upgrade of UD eval script (#5776) 2020-07-19 11:10:31 +02:00
examples Refactor pipeline components, config and language data (#5759) 2020-07-22 13:42:59 +02:00
include Fix numpy header 2016-10-19 20:05:44 +02:00
spacy Refactor pipeline components, config and language data (#5759) 2020-07-22 13:42:59 +02:00
website Merge branch 'develop' into master-tmp 2020-07-20 14:58:04 +02:00
.gitignore Merge branch 'develop' into master-tmp 2020-07-20 14:58:04 +02:00
azure-pipelines.yml Pin flake8 version 2020-05-18 10:50:21 +02:00
CITATION Update CITATION (#3873) 2019-06-24 11:03:16 +02:00
CONTRIBUTING.md Drop Python 2.7 and 3.5 (#4828) 2019-12-22 01:53:56 +01:00
fabfile.py More formatting changes 2019-12-25 17:59:52 +01:00
LICENSE Update LICENSE Year 2020-03-10 15:03:29 +05:30
Makefile Merge branch 'develop' into master-tmp 2020-07-20 14:58:04 +02:00
MANIFEST.in Merge branch 'develop' into master-tmp 2020-07-20 14:58:04 +02:00
netlify.toml Update v3 docs [ci skip] 2020-07-05 16:11:16 +02:00
pyproject.toml Refactor pipeline components, config and language data (#5759) 2020-07-22 13:42:59 +02:00
README.md Start updating website for v3 [ci skip] 2020-07-01 21:26:39 +02:00
requirements.txt Refactor pipeline components, config and language data (#5759) 2020-07-22 13:42:59 +02:00
setup.cfg Refactor pipeline components, config and language data (#5759) 2020-07-22 13:42:59 +02:00
setup.py Refactor pipeline components, config and language data (#5759) 2020-07-22 13:42:59 +02:00

spaCy: Industrial-strength NLP

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pretrained statistical models and word vectors, and currently supports tokenization for 60+ languages. It features state-of-the-art speed, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license.

💫 Version 2.3 out now! Check out the release notes here.

Azure Pipelines Current Release Version pypi Version conda Version Python wheels PyPi downloads Conda downloads Model downloads Code style: black spaCy on Twitter

📖 Documentation

Documentation
spaCy 101 New to spaCy? Here's everything you need to know!
Usage Guides How to use spaCy and its features.
New in v2.3 New features, backwards incompatibilities and migration guide.
API Reference The detailed reference for spaCy's API.
Models Download statistical language models for spaCy.
Universe Libraries, extensions, demos, books and courses.
Changelog Changes and version history.
Contribute How to contribute to the spaCy project and code base.

💬 Where to ask questions

The spaCy project is maintained by @honnibal and @ines, along with core contributors @svlandeg and @adrianeboyd. Please understand that we won't be able to provide individual support via email. We also believe that help is much more valuable if it's shared publicly, so that more people can benefit from it.

Type Platforms
🚨 Bug Reports GitHub Issue Tracker
🎁 Feature Requests GitHub Issue Tracker
👩‍💻 Usage Questions Stack Overflow · Gitter Chat · Reddit User Group
🗯 General Discussion Gitter Chat · Reddit User Group

Features

  • Non-destructive tokenization
  • Named entity recognition
  • Support for 50+ languages
  • pretrained statistical models and word vectors
  • State-of-the-art speed
  • Easy deep learning integration
  • Part-of-speech tagging
  • Labelled dependency parsing
  • Syntax-driven sentence segmentation
  • Built in visualizers for syntax and NER
  • Convenient string-to-hash mapping
  • Export to numpy data arrays
  • Efficient binary serialization
  • Easy model packaging and deployment
  • Robust, rigorously evaluated accuracy

📖 For more details, see the facts, figures and benchmarks.

Install spaCy

For detailed installation instructions, see the documentation.

  • Operating system: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio)
  • Python version: Python 3.6+ (only 64 bit)
  • Package managers: pip · conda (via conda-forge)

⚠️ Important note for Python 3.8: We can't yet ship pre-compiled binary wheels for spaCy that work on Python 3.8, as we're still waiting for our CI providers and other tooling to support it. This means that in order to run spaCy on Python 3.8, you'll need a compiler installed and compile the library and its Cython dependencies locally. If this is causing problems for you, the easiest solution is to use Python 3.7 in the meantime.

pip

Using pip, spaCy releases are available as source packages and binary wheels (as of v2.0.13).

pip install spacy

To install additional data tables for lemmatization and normalization in spaCy v2.2+ you can run pip install spacy[lookups] or install spacy-lookups-data separately. The lookups package is needed to create blank models with lemmatization data for v2.2+ plus normalization data for v2.3+, and to lemmatize in languages that don't yet come with pretrained models and aren't powered by third-party libraries.

When using pip it is generally recommended to install packages in a virtual environment to avoid modifying system state:

python -m venv .env
source .env/bin/activate
pip install spacy

conda

Thanks to our great community, we've finally re-added conda support. You can now install spaCy via conda-forge:

conda install -c conda-forge spacy

For the feedstock including the build recipe and configuration, check out this repository. Improvements and pull requests to the recipe and setup are always appreciated.

Updating spaCy

Some updates to spaCy may require downloading new statistical models. If you're running spaCy v2.0 or higher, you can use the validate command to check if your installed models are compatible and if not, print details on how to update them:

pip install -U spacy
python -m spacy validate

If you've trained your own models, keep in mind that your training and runtime inputs must match. After updating spaCy, we recommend retraining your models with the new version.

📖 For details on upgrading from spaCy 1.x to spaCy 2.x, see the migration guide.

Download models

As of v1.7.0, models for spaCy can be installed as Python packages. This means that they're a component of your application, just like any other module. Models can be installed using spaCy's download command, or manually by pointing pip to a path or URL.

Documentation
Available Models Detailed model descriptions, accuracy figures and benchmarks.
Models Documentation Detailed usage instructions.
# download best-matching version of specific model for your spaCy installation
python -m spacy download en_core_web_sm

# pip install .tar.gz archive from path or URL
pip install /Users/you/en_core_web_sm-2.2.0.tar.gz
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz

Loading and using models

To load a model, use spacy.load() with the model name or a path to the model data directory.

import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("This is a sentence.")

You can also import a model directly via its full name and then call its load() method with no arguments.

import spacy
import en_core_web_sm

nlp = en_core_web_sm.load()
doc = nlp("This is a sentence.")

📖 For more info and examples, check out the models documentation.

Compile from source

The other way to install spaCy is to clone its GitHub repository and build it from source. That is the common way if you want to make changes to the code base. You'll need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, virtualenv and git installed. The compiler part is the trickiest. How to do that depends on your system. See notes on Ubuntu, OS X and Windows for details.

# make sure you are using the latest pip
python -m pip install -U pip
git clone https://github.com/explosion/spaCy
cd spaCy

python -m venv .env
source .env/bin/activate
export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

Compared to regular install via pip, requirements.txt additionally installs developer dependencies such as Cython. For more details and instructions, see the documentation on compiling spaCy from source and the quickstart widget to get the right commands for your platform and Python version.

Ubuntu

Install system-level dependencies via apt-get:

sudo apt-get install build-essential python-dev git

macOS / OS X

Install a recent version of XCode, including the so-called "Command Line Tools". macOS and OS X ship with Python and git preinstalled.

Windows

Install a version of the Visual C++ Build Tools or Visual Studio Express that matches the version that was used to compile your Python interpreter.

Run tests

spaCy comes with an extensive test suite. In order to run the tests, you'll usually want to clone the repository and build spaCy from source. This will also install the required development dependencies and test utilities defined in the requirements.txt.

Alternatively, you can find out where spaCy is installed and run pytest on that directory. Don't forget to also install the test utilities via spaCy's requirements.txt:

python -c "import os; import spacy; print(os.path.dirname(spacy.__file__))"
pip install -r path/to/requirements.txt
python -m pytest <spacy-directory>

See the documentation for more details and examples.