spaCy/spacy/lang/nl/lemmatizer.py
Ines Montani 43b960c01b
Refactor pipeline components, config and language data (#5759)
* Update with WIP

* Update with WIP

* Update with pipeline serialization

* Update types and pipe factories

* Add deep merge, tidy up and add tests

* Fix pipe creation from config

* Don't validate default configs on load

* Update spacy/language.py

Co-authored-by: Ines Montani <ines@ines.io>

* Adjust factory/component meta error

* Clean up factory args and remove defaults

* Add test for failing empty dict defaults

* Update pipeline handling and methods

* provide KB as registry function instead of as object

* small change in test to make functionality more clear

* update example script for EL configuration

* Fix typo

* Simplify test

* Simplify test

* splitting pipes.pyx into separate files

* moving default configs to each component file

* fix batch_size type

* removing default values from component constructors where possible (TODO: test 4725)

* skip instead of xfail

* Add test for config -> nlp with multiple instances

* pipeline.pipes -> pipeline.pipe

* Tidy up, document, remove kwargs

* small cleanup/generalization for Tok2VecListener

* use DEFAULT_UPSTREAM field

* revert to avoid circular imports

* Fix tests

* Replace deprecated arg

* Make model dirs require config

* fix pickling of keyword-only arguments in constructor

* WIP: clean up and integrate full config

* Add helper to handle function args more reliably

Now also includes keyword-only args

* Fix config composition and serialization

* Improve config debugging and add visual diff

* Remove unused defaults and fix type

* Remove pipeline and factories from meta

* Update spacy/default_config.cfg

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/default_config.cfg

* small UX edits

* avoid printing stack trace for debug CLI commands

* Add support for language-specific factories

* specify the section of the config which holds the model to debug

* WIP: add Language.from_config

* Update with language data refactor WIP

* Auto-format

* Add backwards-compat handling for Language.factories

* Update morphologizer.pyx

* Fix morphologizer

* Update and simplify lemmatizers

* Fix Japanese tests

* Port over tagger changes

* Fix Chinese and tests

* Update to latest Thinc

* WIP: xfail first Russian lemmatizer test

* Fix component-specific overrides

* fix nO for output layers in debug_model

* Fix default value

* Fix tests and don't pass objects in config

* Fix deep merging

* Fix lemma lookup data registry

Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)

* Add types

* Add Vocab.from_config

* Fix typo

* Fix tests

* Make config copying more elegant

* Fix pipe analysis

* Fix lemmatizers and is_base_form

* WIP: move language defaults to config

* Fix morphology type

* Fix vocab

* Remove comment

* Update to latest Thinc

* Add morph rules to config

* Tidy up

* Remove set_morphology option from tagger factory

* Hack use_gpu

* Move [pipeline] to top-level block and make [nlp.pipeline] list

Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them

* Fix use_gpu and resume in CLI

* Auto-format

* Remove resume from config

* Fix formatting and error

* [pipeline] -> [components]

* Fix types

* Fix tagger test: requires set_morphology?

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 13:42:59 +02:00

128 lines
4.5 KiB
Python

from typing import Optional, List, Dict, Tuple
from ...lemmatizer import Lemmatizer
from ...symbols import NOUN, VERB, ADJ, NUM, DET, PRON, ADP, AUX, ADV
class DutchLemmatizer(Lemmatizer):
# Note: CGN does not distinguish AUX verbs, so we treat AUX as VERB.
univ_pos_name_variants = {
NOUN: "noun",
"NOUN": "noun",
"noun": "noun",
VERB: "verb",
"VERB": "verb",
"verb": "verb",
AUX: "verb",
"AUX": "verb",
"aux": "verb",
ADJ: "adj",
"ADJ": "adj",
"adj": "adj",
ADV: "adv",
"ADV": "adv",
"adv": "adv",
PRON: "pron",
"PRON": "pron",
"pron": "pron",
DET: "det",
"DET": "det",
"det": "det",
ADP: "adp",
"ADP": "adp",
"adp": "adp",
NUM: "num",
"NUM": "num",
"num": "num",
}
def __call__(
self, string: str, univ_pos: str, morphology: Optional[dict] = None
) -> List[str]:
# Difference 1: self.rules is assumed to be non-None, so no
# 'is None' check required.
# String lowercased from the get-go. All lemmatization results in
# lowercased strings. For most applications, this shouldn't pose
# any problems, and it keeps the exceptions indexes small. If this
# creates problems for proper nouns, we can introduce a check for
# univ_pos == "PROPN".
string = string.lower()
try:
univ_pos = self.univ_pos_name_variants[univ_pos]
except KeyError:
# Because PROPN not in self.univ_pos_name_variants, proper names
# are not lemmatized. They are lowercased, however.
return [string]
# if string in self.lemma_index.get(univ_pos)
index_table = self.lookups.get_table("lemma_index", {})
lemma_index = index_table.get(univ_pos, {})
# string is already lemma
if string in lemma_index:
return [string]
exc_table = self.lookups.get_table("lemma_exc", {})
exceptions = exc_table.get(univ_pos, {})
# string is irregular token contained in exceptions index.
try:
lemma = exceptions[string]
return [lemma[0]]
except KeyError:
pass
# string corresponds to key in lookup table
lookup_table = self.lookups.get_table("lemma_lookup", {})
looked_up_lemma = lookup_table.get(string)
if looked_up_lemma and looked_up_lemma in lemma_index:
return [looked_up_lemma]
rules_table = self.lookups.get_table("lemma_rules", {})
forms, is_known = self.lemmatize(
string, lemma_index, exceptions, rules_table.get(univ_pos, [])
)
# Back-off through remaining return value candidates.
if forms:
if is_known:
return forms
else:
for form in forms:
if form in exceptions:
return [form]
if looked_up_lemma:
return [looked_up_lemma]
else:
return forms
elif looked_up_lemma:
return [looked_up_lemma]
else:
return [string]
# Overrides parent method so that a lowercased version of the string is
# used to search the lookup table. This is necessary because our lookup
# table consists entirely of lowercase keys.
def lookup(self, string: str, orth: Optional[int] = None) -> str:
lookup_table = self.lookups.get_table("lemma_lookup", {})
string = string.lower()
if orth is not None:
return lookup_table.get(orth, string)
else:
return lookup_table.get(string, string)
# Reimplemented to focus more on application of suffix rules and to return
# as early as possible.
def lemmatize(
self,
string: str,
index: Dict[str, List[str]],
exceptions: Dict[str, Dict[str, List[str]]],
rules: Dict[str, List[List[str]]],
) -> Tuple[List[str], bool]:
# returns (forms, is_known: bool)
oov_forms = []
for old, new in rules:
if string.endswith(old):
form = string[: len(string) - len(old)] + new
if not form:
pass
elif form in index:
return [form], True # True = Is known (is lemma)
else:
oov_forms.append(form)
return list(set(oov_forms)), False