mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Replace functions registries with catalogue * Update __init__.py * Fix test * Revert unrelated flag [ci skip]
		
			
				
	
	
		
			177 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import unicode_literals
 | 
						|
 | 
						|
from thinc.api import chain, layerize, clone, concatenate, with_flatten, uniqued
 | 
						|
from thinc.api import noop, with_square_sequences
 | 
						|
from thinc.v2v import Maxout, Model
 | 
						|
from thinc.i2v import HashEmbed, StaticVectors
 | 
						|
from thinc.t2t import ExtractWindow
 | 
						|
from thinc.misc import Residual, LayerNorm, FeatureExtracter
 | 
						|
from ..util import make_layer, registry
 | 
						|
from ._wire import concatenate_lists
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.Tok2Vec.v1")
 | 
						|
def Tok2Vec(config):
 | 
						|
    doc2feats = make_layer(config["@doc2feats"])
 | 
						|
    embed = make_layer(config["@embed"])
 | 
						|
    encode = make_layer(config["@encode"])
 | 
						|
    field_size = getattr(encode, "receptive_field", 0)
 | 
						|
    tok2vec = chain(doc2feats, with_flatten(chain(embed, encode), pad=field_size))
 | 
						|
    tok2vec.cfg = config
 | 
						|
    tok2vec.nO = encode.nO
 | 
						|
    tok2vec.embed = embed
 | 
						|
    tok2vec.encode = encode
 | 
						|
    return tok2vec
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.Doc2Feats.v1")
 | 
						|
def Doc2Feats(config):
 | 
						|
    columns = config["columns"]
 | 
						|
    return FeatureExtracter(columns)
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.MultiHashEmbed.v1")
 | 
						|
def MultiHashEmbed(config):
 | 
						|
    # For backwards compatibility with models before the architecture registry,
 | 
						|
    # we have to be careful to get exactly the same model structure. One subtle
 | 
						|
    # trick is that when we define concatenation with the operator, the operator
 | 
						|
    # is actually binary associative. So when we write (a | b | c), we're actually
 | 
						|
    # getting concatenate(concatenate(a, b), c). That's why the implementation
 | 
						|
    # is a bit ugly here.
 | 
						|
    cols = config["columns"]
 | 
						|
    width = config["width"]
 | 
						|
    rows = config["rows"]
 | 
						|
 | 
						|
    norm = HashEmbed(width, rows, column=cols.index("NORM"), name="embed_norm")
 | 
						|
    if config["use_subwords"]:
 | 
						|
        prefix = HashEmbed(
 | 
						|
            width, rows // 2, column=cols.index("PREFIX"), name="embed_prefix"
 | 
						|
        )
 | 
						|
        suffix = HashEmbed(
 | 
						|
            width, rows // 2, column=cols.index("SUFFIX"), name="embed_suffix"
 | 
						|
        )
 | 
						|
        shape = HashEmbed(
 | 
						|
            width, rows // 2, column=cols.index("SHAPE"), name="embed_shape"
 | 
						|
        )
 | 
						|
    if config.get("@pretrained_vectors"):
 | 
						|
        glove = make_layer(config["@pretrained_vectors"])
 | 
						|
    mix = make_layer(config["@mix"])
 | 
						|
 | 
						|
    with Model.define_operators({">>": chain, "|": concatenate}):
 | 
						|
        if config["use_subwords"] and config["@pretrained_vectors"]:
 | 
						|
            mix._layers[0].nI = width * 5
 | 
						|
            layer = uniqued(
 | 
						|
                (glove | norm | prefix | suffix | shape) >> mix,
 | 
						|
                column=cols.index("ORTH"),
 | 
						|
            )
 | 
						|
        elif config["use_subwords"]:
 | 
						|
            mix._layers[0].nI = width * 4
 | 
						|
            layer = uniqued(
 | 
						|
                (norm | prefix | suffix | shape) >> mix, column=cols.index("ORTH")
 | 
						|
            )
 | 
						|
        elif config["@pretrained_vectors"]:
 | 
						|
            mix._layers[0].nI = width * 2
 | 
						|
            layer = uniqued((glove | norm) >> mix, column=cols.index("ORTH"),)
 | 
						|
        else:
 | 
						|
            layer = norm
 | 
						|
    layer.cfg = config
 | 
						|
    return layer
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.CharacterEmbed.v1")
 | 
						|
def CharacterEmbed(config):
 | 
						|
    from .. import _ml
 | 
						|
 | 
						|
    width = config["width"]
 | 
						|
    chars = config["chars"]
 | 
						|
 | 
						|
    chr_embed = _ml.CharacterEmbedModel(nM=width, nC=chars)
 | 
						|
    other_tables = make_layer(config["@embed_features"])
 | 
						|
    mix = make_layer(config["@mix"])
 | 
						|
 | 
						|
    model = chain(concatenate_lists(chr_embed, other_tables), mix)
 | 
						|
    model.cfg = config
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
 | 
						|
def MaxoutWindowEncoder(config):
 | 
						|
    nO = config["width"]
 | 
						|
    nW = config["window_size"]
 | 
						|
    nP = config["pieces"]
 | 
						|
    depth = config["depth"]
 | 
						|
 | 
						|
    cnn = chain(
 | 
						|
        ExtractWindow(nW=nW), LayerNorm(Maxout(nO, nO * ((nW * 2) + 1), pieces=nP))
 | 
						|
    )
 | 
						|
    model = clone(Residual(cnn), depth)
 | 
						|
    model.nO = nO
 | 
						|
    model.receptive_field = nW * depth
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.MishWindowEncoder.v1")
 | 
						|
def MishWindowEncoder(config):
 | 
						|
    from thinc.v2v import Mish
 | 
						|
 | 
						|
    nO = config["width"]
 | 
						|
    nW = config["window_size"]
 | 
						|
    depth = config["depth"]
 | 
						|
 | 
						|
    cnn = chain(ExtractWindow(nW=nW), LayerNorm(Mish(nO, nO * ((nW * 2) + 1))))
 | 
						|
    model = clone(Residual(cnn), depth)
 | 
						|
    model.nO = nO
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.PretrainedVectors.v1")
 | 
						|
def PretrainedVectors(config):
 | 
						|
    return StaticVectors(config["vectors_name"], config["width"], config["column"])
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
 | 
						|
def TorchBiLSTMEncoder(config):
 | 
						|
    import torch.nn
 | 
						|
    from thinc.extra.wrappers import PyTorchWrapperRNN
 | 
						|
 | 
						|
    width = config["width"]
 | 
						|
    depth = config["depth"]
 | 
						|
    if depth == 0:
 | 
						|
        return layerize(noop())
 | 
						|
    return with_square_sequences(
 | 
						|
        PyTorchWrapperRNN(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
_EXAMPLE_CONFIG = {
 | 
						|
    "@doc2feats": {
 | 
						|
        "arch": "Doc2Feats",
 | 
						|
        "config": {"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]},
 | 
						|
    },
 | 
						|
    "@embed": {
 | 
						|
        "arch": "spacy.MultiHashEmbed.v1",
 | 
						|
        "config": {
 | 
						|
            "width": 96,
 | 
						|
            "rows": 2000,
 | 
						|
            "columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"],
 | 
						|
            "use_subwords": True,
 | 
						|
            "@pretrained_vectors": {
 | 
						|
                "arch": "TransformedStaticVectors",
 | 
						|
                "config": {
 | 
						|
                    "vectors_name": "en_vectors_web_lg.vectors",
 | 
						|
                    "width": 96,
 | 
						|
                    "column": 0,
 | 
						|
                },
 | 
						|
            },
 | 
						|
            "@mix": {
 | 
						|
                "arch": "LayerNormalizedMaxout",
 | 
						|
                "config": {"width": 96, "pieces": 3},
 | 
						|
            },
 | 
						|
        },
 | 
						|
    },
 | 
						|
    "@encode": {
 | 
						|
        "arch": "MaxoutWindowEncode",
 | 
						|
        "config": {"width": 96, "window_size": 1, "depth": 4, "pieces": 3},
 | 
						|
    },
 | 
						|
}
 |