mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			323 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
'''WIP --- Doesn't work well yet'''
 | 
						|
import plac
 | 
						|
import random
 | 
						|
import six
 | 
						|
 | 
						|
import cProfile
 | 
						|
import pstats
 | 
						|
 | 
						|
import pathlib
 | 
						|
import cPickle as pickle
 | 
						|
from itertools import izip
 | 
						|
 | 
						|
import spacy
 | 
						|
 | 
						|
import cytoolz
 | 
						|
import cupy as xp
 | 
						|
import cupy.cuda
 | 
						|
import chainer.cuda
 | 
						|
 | 
						|
import chainer.links as L
 | 
						|
import chainer.functions as F
 | 
						|
from chainer import Chain, Variable, report
 | 
						|
import chainer.training
 | 
						|
import chainer.optimizers
 | 
						|
from chainer.training import extensions
 | 
						|
from chainer.iterators import SerialIterator
 | 
						|
from chainer.datasets import TupleDataset
 | 
						|
 | 
						|
 | 
						|
class SentimentAnalyser(object):
 | 
						|
    @classmethod
 | 
						|
    def load(cls, path, nlp, max_length=100):
 | 
						|
        raise NotImplementedError
 | 
						|
        #with (path / 'config.json').open() as file_:
 | 
						|
        #    model = model_from_json(file_.read())
 | 
						|
        #with (path / 'model').open('rb') as file_:
 | 
						|
        #    lstm_weights = pickle.load(file_)
 | 
						|
        #embeddings = get_embeddings(nlp.vocab)
 | 
						|
        #model.set_weights([embeddings] + lstm_weights)
 | 
						|
        #return cls(model, max_length=max_length)
 | 
						|
 | 
						|
    def __init__(self, model, max_length=100):
 | 
						|
        self._model = model
 | 
						|
        self.max_length = max_length
 | 
						|
 | 
						|
    def __call__(self, doc):
 | 
						|
        X = get_features([doc], self.max_length)
 | 
						|
        y = self._model.predict(X)
 | 
						|
        self.set_sentiment(doc, y)
 | 
						|
 | 
						|
    def pipe(self, docs, batch_size=1000, n_threads=2):
 | 
						|
        for minibatch in cytoolz.partition_all(batch_size, docs):
 | 
						|
            minibatch = list(minibatch)
 | 
						|
            sentences = []
 | 
						|
            for doc in minibatch:
 | 
						|
                sentences.extend(doc.sents)
 | 
						|
            Xs = get_features(sentences, self.max_length)
 | 
						|
            ys = self._model.predict(Xs)
 | 
						|
            for sent, label in zip(sentences, ys):
 | 
						|
                sent.doc.sentiment += label - 0.5
 | 
						|
            for doc in minibatch:
 | 
						|
                yield doc
 | 
						|
 | 
						|
    def set_sentiment(self, doc, y):
 | 
						|
        doc.sentiment = float(y[0])
 | 
						|
        # Sentiment has a native slot for a single float.
 | 
						|
        # For arbitrary data storage, there's:
 | 
						|
        # doc.user_data['my_data'] = y
 | 
						|
 | 
						|
 | 
						|
class Classifier(Chain):
 | 
						|
    def __init__(self, predictor):
 | 
						|
        super(Classifier, self).__init__(predictor=predictor)
 | 
						|
 | 
						|
    def __call__(self, x, t):
 | 
						|
        y = self.predictor(x)
 | 
						|
        loss = F.softmax_cross_entropy(y, t)
 | 
						|
        accuracy = F.accuracy(y, t)
 | 
						|
        report({'loss': loss, 'accuracy': accuracy}, self)
 | 
						|
        return loss
 | 
						|
 | 
						|
 | 
						|
class SentimentModel(Chain):
 | 
						|
    def __init__(self, nlp, shape, **settings):
 | 
						|
        Chain.__init__(self,
 | 
						|
            embed=_Embed(shape['nr_vector'], shape['nr_dim'], shape['nr_hidden'],
 | 
						|
                set_vectors=lambda arr: set_vectors(arr, nlp.vocab)),
 | 
						|
            encode=_Encode(shape['nr_hidden'], shape['nr_hidden']),
 | 
						|
            attend=_Attend(shape['nr_hidden'], shape['nr_hidden']),
 | 
						|
            predict=_Predict(shape['nr_hidden'], shape['nr_class']))
 | 
						|
        self.to_gpu(0)
 | 
						|
 | 
						|
    def __call__(self, sentence):
 | 
						|
        return self.predict(
 | 
						|
                  self.attend(
 | 
						|
                      self.encode(
 | 
						|
                          self.embed(sentence))))
 | 
						|
 | 
						|
 | 
						|
class _Embed(Chain):
 | 
						|
    def __init__(self, nr_vector, nr_dim, nr_out, set_vectors=None):
 | 
						|
        Chain.__init__(self,
 | 
						|
            embed=L.EmbedID(nr_vector, nr_dim, initialW=set_vectors),
 | 
						|
            project=L.Linear(None, nr_out, nobias=True))
 | 
						|
        self.embed.W.volatile = False
 | 
						|
 | 
						|
    def __call__(self, sentence):
 | 
						|
        return [self.project(self.embed(ts)) for ts in F.transpose(sentence)]
 | 
						|
 | 
						|
 | 
						|
class _Encode(Chain):
 | 
						|
    def __init__(self, nr_in, nr_out):
 | 
						|
        Chain.__init__(self,
 | 
						|
            fwd=L.LSTM(nr_in, nr_out),
 | 
						|
            bwd=L.LSTM(nr_in, nr_out),
 | 
						|
            mix=L.Bilinear(nr_out, nr_out, nr_out))
 | 
						|
 | 
						|
    def __call__(self, sentence):
 | 
						|
        self.fwd.reset_state()
 | 
						|
        fwds = map(self.fwd, sentence)
 | 
						|
        self.bwd.reset_state()
 | 
						|
        bwds = reversed(map(self.bwd, reversed(sentence)))
 | 
						|
        return [F.elu(self.mix(f, b)) for f, b in zip(fwds, bwds)]
 | 
						|
 | 
						|
 | 
						|
class _Attend(Chain):
 | 
						|
    def __init__(self, nr_in, nr_out):
 | 
						|
        Chain.__init__(self)
 | 
						|
 | 
						|
    def __call__(self, sentence):
 | 
						|
        sent = sum(sentence)
 | 
						|
        return sent
 | 
						|
 | 
						|
 | 
						|
class _Predict(Chain):
 | 
						|
    def __init__(self, nr_in, nr_out):
 | 
						|
        Chain.__init__(self,
 | 
						|
            l1=L.Linear(nr_in, nr_in),
 | 
						|
            l2=L.Linear(nr_in, nr_out))
 | 
						|
 | 
						|
    def __call__(self, vector):
 | 
						|
        vector = self.l1(vector)
 | 
						|
        vector = F.elu(vector)
 | 
						|
        vector = self.l2(vector)
 | 
						|
        return vector
 | 
						|
 | 
						|
 | 
						|
class SentenceDataset(TupleDataset):
 | 
						|
    def __init__(self, nlp, texts, labels, max_length):
 | 
						|
        self.max_length = max_length
 | 
						|
        sents, labels = self._get_labelled_sentences(
 | 
						|
            nlp.pipe(texts, batch_size=5000, n_threads=3),
 | 
						|
            labels)
 | 
						|
        TupleDataset.__init__(self,
 | 
						|
            get_features(sents, max_length),
 | 
						|
            labels)
 | 
						|
 | 
						|
    def __getitem__(self, index):
 | 
						|
        batches = [dataset[index] for dataset in self._datasets]
 | 
						|
        if isinstance(index, slice):
 | 
						|
            length = len(batches[0])
 | 
						|
            returns = [tuple([batch[i] for batch in batches])
 | 
						|
                       for i in six.moves.range(length)]
 | 
						|
            return returns
 | 
						|
        else:
 | 
						|
            return tuple(batches)
 | 
						|
 | 
						|
    def _get_labelled_sentences(self, docs, doc_labels):
 | 
						|
        labels = []
 | 
						|
        sentences = []
 | 
						|
        for doc, y in izip(docs, doc_labels):
 | 
						|
            for sent in doc.sents:
 | 
						|
                sentences.append(sent)
 | 
						|
                labels.append(y)
 | 
						|
        return sentences, xp.asarray(labels, dtype='i')
 | 
						|
 | 
						|
 | 
						|
class DocDataset(TupleDataset):
 | 
						|
    def __init__(self, nlp, texts, labels):
 | 
						|
        self.max_length = max_length
 | 
						|
        DatasetMixin.__init__(self,
 | 
						|
            get_features(
 | 
						|
                nlp.pipe(texts, batch_size=5000, n_threads=3), self.max_length),
 | 
						|
            labels)
 | 
						|
 | 
						|
def read_data(data_dir, limit=0):
 | 
						|
    examples = []
 | 
						|
    for subdir, label in (('pos', 1), ('neg', 0)):
 | 
						|
        for filename in (data_dir / subdir).iterdir():
 | 
						|
            with filename.open() as file_:
 | 
						|
                text = file_.read()
 | 
						|
            examples.append((text, label))
 | 
						|
    random.shuffle(examples)
 | 
						|
    if limit >= 1:
 | 
						|
        examples = examples[:limit]
 | 
						|
    return zip(*examples) # Unzips into two lists
 | 
						|
 | 
						|
 | 
						|
def get_features(docs, max_length):
 | 
						|
    docs = list(docs)
 | 
						|
    Xs = xp.zeros((len(docs), max_length), dtype='i')
 | 
						|
    for i, doc in enumerate(docs):
 | 
						|
        j = 0
 | 
						|
        for token in doc:
 | 
						|
            if token.has_vector and not token.is_punct and not token.is_space:
 | 
						|
                Xs[i, j] = token.norm
 | 
						|
                j += 1
 | 
						|
                if j >= max_length:
 | 
						|
                    break
 | 
						|
    return Xs
 | 
						|
 | 
						|
 | 
						|
def set_vectors(vectors, vocab):
 | 
						|
    for lex in vocab:
 | 
						|
        if lex.has_vector and (lex.rank+1) < vectors.shape[0]:
 | 
						|
            lex.norm = lex.rank+1
 | 
						|
            vectors[lex.rank + 1] = lex.vector
 | 
						|
        else:
 | 
						|
            lex.norm = 0
 | 
						|
    return vectors
 | 
						|
 | 
						|
 | 
						|
def train(train_texts, train_labels, dev_texts, dev_labels,
 | 
						|
        lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
 | 
						|
        by_sentence=True):
 | 
						|
    nlp = spacy.load('en', entity=False)
 | 
						|
    if 'nr_vector' not in lstm_shape:
 | 
						|
        lstm_shape['nr_vector'] = max(lex.rank+1 for lex in nlp.vocab if lex.has_vector)
 | 
						|
    if 'nr_dim' not in lstm_shape:
 | 
						|
        lstm_shape['nr_dim'] = nlp.vocab.vectors_length
 | 
						|
    print("Make model")
 | 
						|
    model = Classifier(SentimentModel(nlp, lstm_shape, **lstm_settings))
 | 
						|
    print("Parsing texts...")
 | 
						|
    if by_sentence:
 | 
						|
        train_data = SentenceDataset(nlp, train_texts, train_labels, lstm_shape['max_length'])
 | 
						|
        dev_data = SentenceDataset(nlp, dev_texts, dev_labels, lstm_shape['max_length'])
 | 
						|
    else:
 | 
						|
        train_data = DocDataset(nlp, train_texts, train_labels)
 | 
						|
        dev_data = DocDataset(nlp, dev_texts, dev_labels)
 | 
						|
    train_iter = SerialIterator(train_data, batch_size=batch_size,
 | 
						|
                                shuffle=True, repeat=True)
 | 
						|
    dev_iter = SerialIterator(dev_data, batch_size=batch_size,
 | 
						|
                              shuffle=False, repeat=False)
 | 
						|
    optimizer = chainer.optimizers.Adam()
 | 
						|
    optimizer.setup(model)
 | 
						|
    updater = chainer.training.StandardUpdater(train_iter, optimizer, device=0)
 | 
						|
    trainer = chainer.training.Trainer(updater, (1, 'epoch'), out='result')
 | 
						|
 | 
						|
    trainer.extend(extensions.Evaluator(dev_iter, model, device=0))
 | 
						|
    trainer.extend(extensions.LogReport())
 | 
						|
    trainer.extend(extensions.PrintReport([
 | 
						|
        'epoch', 'main/accuracy', 'validation/main/accuracy']))
 | 
						|
    trainer.extend(extensions.ProgressBar())
 | 
						|
    
 | 
						|
    trainer.run()
 | 
						|
 | 
						|
 | 
						|
def evaluate(model_dir, texts, labels, max_length=100):
 | 
						|
    def create_pipeline(nlp):
 | 
						|
        '''
 | 
						|
        This could be a lambda, but named functions are easier to read in Python.
 | 
						|
        '''
 | 
						|
        return [nlp.tagger, nlp.parser, SentimentAnalyser.load(model_dir, nlp,
 | 
						|
                                                               max_length=max_length)]
 | 
						|
    
 | 
						|
    nlp = spacy.load('en')
 | 
						|
    nlp.pipeline = create_pipeline(nlp)
 | 
						|
 | 
						|
    correct = 0
 | 
						|
    i = 0 
 | 
						|
    for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
 | 
						|
        correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
 | 
						|
        i += 1
 | 
						|
    return float(correct) / i
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    train_dir=("Location of training file or directory"),
 | 
						|
    dev_dir=("Location of development file or directory"),
 | 
						|
    model_dir=("Location of output model directory",),
 | 
						|
    is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
 | 
						|
    nr_hidden=("Number of hidden units", "option", "H", int),
 | 
						|
    max_length=("Maximum sentence length", "option", "L", int),
 | 
						|
    dropout=("Dropout", "option", "d", float),
 | 
						|
    learn_rate=("Learn rate", "option", "e", float),
 | 
						|
    nb_epoch=("Number of training epochs", "option", "i", int),
 | 
						|
    batch_size=("Size of minibatches for training LSTM", "option", "b", int),
 | 
						|
    nr_examples=("Limit to N examples", "option", "n", int)
 | 
						|
)
 | 
						|
def main(model_dir, train_dir, dev_dir,
 | 
						|
         is_runtime=False,
 | 
						|
         nr_hidden=64, max_length=100, # Shape
 | 
						|
         dropout=0.5, learn_rate=0.001, # General NN config
 | 
						|
         nb_epoch=5, batch_size=32, nr_examples=-1):  # Training params
 | 
						|
    model_dir = pathlib.Path(model_dir)
 | 
						|
    train_dir = pathlib.Path(train_dir)
 | 
						|
    dev_dir = pathlib.Path(dev_dir)
 | 
						|
    if is_runtime:
 | 
						|
        dev_texts, dev_labels = read_data(dev_dir)
 | 
						|
        acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
 | 
						|
        print(acc)
 | 
						|
    else:
 | 
						|
        print("Read data")
 | 
						|
        train_texts, train_labels = read_data(train_dir, limit=nr_examples)
 | 
						|
        dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
 | 
						|
        print("Using GPU 0")
 | 
						|
        #chainer.cuda.get_device(0).use()
 | 
						|
        train_labels = xp.asarray(train_labels, dtype='i')
 | 
						|
        dev_labels = xp.asarray(dev_labels, dtype='i')
 | 
						|
        lstm = train(train_texts, train_labels, dev_texts, dev_labels,
 | 
						|
                     {'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 2,
 | 
						|
                      'nr_vector': 5000},
 | 
						|
                      {'dropout': 0.5, 'lr': learn_rate},
 | 
						|
                      {},
 | 
						|
                      nb_epoch=nb_epoch, batch_size=batch_size)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    #cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
 | 
						|
    #s = pstats.Stats("Profile.prof")
 | 
						|
    #s.strip_dirs().sort_stats("time").print_stats()
 | 
						|
    plac.call(main)
 |