mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			224 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from spacy import displacy
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.lang.ja import Japanese
 | 
						|
from spacy.lang.xx import MultiLanguage
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.matcher import Matcher
 | 
						|
from spacy.tokens import Doc, Span
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.compat import pickle
 | 
						|
import numpy
 | 
						|
import random
 | 
						|
 | 
						|
 | 
						|
def test_issue2564():
 | 
						|
    """Test the tagger sets has_annotation("TAG") correctly when used via Language.pipe."""
 | 
						|
    nlp = Language()
 | 
						|
    tagger = nlp.add_pipe("tagger")
 | 
						|
    tagger.add_label("A")
 | 
						|
    nlp.begin_training()
 | 
						|
    doc = nlp("hello world")
 | 
						|
    assert doc.has_annotation("TAG")
 | 
						|
    docs = nlp.pipe(["hello", "world"])
 | 
						|
    piped_doc = next(docs)
 | 
						|
    assert piped_doc.has_annotation("TAG")
 | 
						|
 | 
						|
 | 
						|
def test_issue2569(en_tokenizer):
 | 
						|
    """Test that operator + is greedy."""
 | 
						|
    doc = en_tokenizer("It is May 15, 1993.")
 | 
						|
    doc.ents = [Span(doc, 2, 6, label=doc.vocab.strings["DATE"])]
 | 
						|
    matcher = Matcher(doc.vocab)
 | 
						|
    matcher.add("RULE", [[{"ENT_TYPE": "DATE", "OP": "+"}]])
 | 
						|
    matched = [doc[start:end] for _, start, end in matcher(doc)]
 | 
						|
    matched = sorted(matched, key=len, reverse=True)
 | 
						|
    assert len(matched) == 10
 | 
						|
    assert len(matched[0]) == 4
 | 
						|
    assert matched[0].text == "May 15, 1993"
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "text",
 | 
						|
    [
 | 
						|
        "ABLEItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume TABLE ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume",
 | 
						|
        "oow.jspsearch.eventoracleopenworldsearch.technologyoraclesolarissearch.technologystoragesearch.technologylinuxsearch.technologyserverssearch.technologyvirtualizationsearch.technologyengineeredsystemspcodewwmkmppscem:",
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_issue2626_2835(en_tokenizer, text):
 | 
						|
    """Check that sentence doesn't cause an infinite loop in the tokenizer."""
 | 
						|
    doc = en_tokenizer(text)
 | 
						|
    assert doc
 | 
						|
 | 
						|
 | 
						|
def test_issue2656(en_tokenizer):
 | 
						|
    """Test that tokenizer correctly splits off punctuation after numbers with
 | 
						|
    decimal points.
 | 
						|
    """
 | 
						|
    doc = en_tokenizer("I went for 40.3, and got home by 10.0.")
 | 
						|
    assert len(doc) == 11
 | 
						|
    assert doc[0].text == "I"
 | 
						|
    assert doc[1].text == "went"
 | 
						|
    assert doc[2].text == "for"
 | 
						|
    assert doc[3].text == "40.3"
 | 
						|
    assert doc[4].text == ","
 | 
						|
    assert doc[5].text == "and"
 | 
						|
    assert doc[6].text == "got"
 | 
						|
    assert doc[7].text == "home"
 | 
						|
    assert doc[8].text == "by"
 | 
						|
    assert doc[9].text == "10.0"
 | 
						|
    assert doc[10].text == "."
 | 
						|
 | 
						|
 | 
						|
def test_issue2671():
 | 
						|
    """Ensure the correct entity ID is returned for matches with quantifiers.
 | 
						|
    See also #2675
 | 
						|
    """
 | 
						|
    nlp = English()
 | 
						|
    matcher = Matcher(nlp.vocab)
 | 
						|
    pattern_id = "test_pattern"
 | 
						|
    pattern = [
 | 
						|
        {"LOWER": "high"},
 | 
						|
        {"IS_PUNCT": True, "OP": "?"},
 | 
						|
        {"LOWER": "adrenaline"},
 | 
						|
    ]
 | 
						|
    matcher.add(pattern_id, [pattern])
 | 
						|
    doc1 = nlp("This is a high-adrenaline situation.")
 | 
						|
    doc2 = nlp("This is a high adrenaline situation.")
 | 
						|
    matches1 = matcher(doc1)
 | 
						|
    for match_id, start, end in matches1:
 | 
						|
        assert nlp.vocab.strings[match_id] == pattern_id
 | 
						|
    matches2 = matcher(doc2)
 | 
						|
    for match_id, start, end in matches2:
 | 
						|
        assert nlp.vocab.strings[match_id] == pattern_id
 | 
						|
 | 
						|
 | 
						|
def test_issue2728(en_vocab):
 | 
						|
    """Test that displaCy ENT visualizer escapes HTML correctly."""
 | 
						|
    doc = Doc(en_vocab, words=["test", "<RELEASE>", "test"])
 | 
						|
    doc.ents = [Span(doc, 0, 1, label="TEST")]
 | 
						|
    html = displacy.render(doc, style="ent")
 | 
						|
    assert "<RELEASE>" in html
 | 
						|
    doc.ents = [Span(doc, 1, 2, label="TEST")]
 | 
						|
    html = displacy.render(doc, style="ent")
 | 
						|
    assert "<RELEASE>" in html
 | 
						|
 | 
						|
 | 
						|
def test_issue2754(en_tokenizer):
 | 
						|
    """Test that words like 'a' and 'a.m.' don't get exceptional norm values."""
 | 
						|
    a = en_tokenizer("a")
 | 
						|
    assert a[0].norm_ == "a"
 | 
						|
    am = en_tokenizer("am")
 | 
						|
    assert am[0].norm_ == "am"
 | 
						|
 | 
						|
 | 
						|
def test_issue2772(en_vocab):
 | 
						|
    """Test that deprojectivization doesn't mess up sentence boundaries."""
 | 
						|
    # fmt: off
 | 
						|
    words = ["When", "we", "write", "or", "communicate", "virtually", ",", "we", "can", "hide", "our", "true", "feelings", "."]
 | 
						|
    # fmt: on
 | 
						|
    # A tree with a non-projective (i.e. crossing) arc
 | 
						|
    # The arcs (0, 4) and (2, 9) cross.
 | 
						|
    heads = [4, 2, 9, 2, 2, 4, 9, 9, 9, 9, 12, 12, 9, 9]
 | 
						|
    deps = ["dep"] * len(heads)
 | 
						|
    doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
 | 
						|
    assert doc[1].is_sent_start is False
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("text", ["-0.23", "+123,456", "±1"])
 | 
						|
@pytest.mark.parametrize("lang_cls", [English, MultiLanguage])
 | 
						|
def test_issue2782(text, lang_cls):
 | 
						|
    """Check that like_num handles + and - before number."""
 | 
						|
    nlp = lang_cls()
 | 
						|
    doc = nlp(text)
 | 
						|
    assert len(doc) == 1
 | 
						|
    assert doc[0].like_num
 | 
						|
 | 
						|
 | 
						|
def test_issue2800():
 | 
						|
    """Test issue that arises when too many labels are added to NER model.
 | 
						|
    Used to cause segfault.
 | 
						|
    """
 | 
						|
    nlp = English()
 | 
						|
    train_data = []
 | 
						|
    train_data.extend(
 | 
						|
        [Example.from_dict(nlp.make_doc("One sentence"), {"entities": []})]
 | 
						|
    )
 | 
						|
    entity_types = [str(i) for i in range(1000)]
 | 
						|
    ner = nlp.add_pipe("ner")
 | 
						|
    for entity_type in list(entity_types):
 | 
						|
        ner.add_label(entity_type)
 | 
						|
    optimizer = nlp.begin_training()
 | 
						|
    for i in range(20):
 | 
						|
        losses = {}
 | 
						|
        random.shuffle(train_data)
 | 
						|
        for example in train_data:
 | 
						|
            nlp.update([example], sgd=optimizer, losses=losses, drop=0.5)
 | 
						|
 | 
						|
 | 
						|
def test_issue2822(it_tokenizer):
 | 
						|
    """Test that the abbreviation of poco is kept as one word."""
 | 
						|
    doc = it_tokenizer("Vuoi un po' di zucchero?")
 | 
						|
    assert len(doc) == 6
 | 
						|
    assert doc[0].text == "Vuoi"
 | 
						|
    assert doc[1].text == "un"
 | 
						|
    assert doc[2].text == "po'"
 | 
						|
    assert doc[3].text == "di"
 | 
						|
    assert doc[4].text == "zucchero"
 | 
						|
    assert doc[5].text == "?"
 | 
						|
 | 
						|
 | 
						|
def test_issue2833(en_vocab):
 | 
						|
    """Test that a custom error is raised if a token or span is pickled."""
 | 
						|
    doc = Doc(en_vocab, words=["Hello", "world"])
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        pickle.dumps(doc[0])
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        pickle.dumps(doc[0:2])
 | 
						|
 | 
						|
 | 
						|
def test_issue2871():
 | 
						|
    """Test that vectors recover the correct key for spaCy reserved words."""
 | 
						|
    words = ["dog", "cat", "SUFFIX"]
 | 
						|
    vocab = Vocab(vectors_name="test_issue2871")
 | 
						|
    vocab.vectors.resize(shape=(3, 10))
 | 
						|
    vector_data = numpy.zeros((3, 10), dtype="f")
 | 
						|
    for word in words:
 | 
						|
        _ = vocab[word]  # noqa: F841
 | 
						|
        vocab.set_vector(word, vector_data[0])
 | 
						|
    vocab.vectors.name = "dummy_vectors"
 | 
						|
    assert vocab["dog"].rank == 0
 | 
						|
    assert vocab["cat"].rank == 1
 | 
						|
    assert vocab["SUFFIX"].rank == 2
 | 
						|
    assert vocab.vectors.find(key="dog") == 0
 | 
						|
    assert vocab.vectors.find(key="cat") == 1
 | 
						|
    assert vocab.vectors.find(key="SUFFIX") == 2
 | 
						|
 | 
						|
 | 
						|
def test_issue2901():
 | 
						|
    """Test that `nlp` doesn't fail."""
 | 
						|
    try:
 | 
						|
        nlp = Japanese()
 | 
						|
    except ImportError:
 | 
						|
        pytest.skip()
 | 
						|
 | 
						|
    doc = nlp("pythonが大好きです")
 | 
						|
    assert doc
 | 
						|
 | 
						|
 | 
						|
def test_issue2926(fr_tokenizer):
 | 
						|
    """Test that the tokenizer correctly splits tokens separated by a slash (/)
 | 
						|
    ending in a digit.
 | 
						|
    """
 | 
						|
    doc = fr_tokenizer("Learn html5/css3/javascript/jquery")
 | 
						|
    assert len(doc) == 8
 | 
						|
    assert doc[0].text == "Learn"
 | 
						|
    assert doc[1].text == "html5"
 | 
						|
    assert doc[2].text == "/"
 | 
						|
    assert doc[3].text == "css3"
 | 
						|
    assert doc[4].text == "/"
 | 
						|
    assert doc[5].text == "javascript"
 | 
						|
    assert doc[6].text == "/"
 | 
						|
    assert doc[7].text == "jquery"
 |