spaCy/website/docs/api/sentencesegmenter.md
Ines Montani 296446a1c8
Tidy up and improve docs and docstrings (#3370)
<!--- Provide a general summary of your changes in the title. -->

## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs

### Types of change
enhancement, docs

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-03-08 11:42:26 +01:00

79 lines
3.2 KiB
Markdown

---
title: SentenceSegmenter
tag: class
source: spacy/pipeline/hooks.py
---
A simple spaCy hook, to allow custom sentence boundary detection logic that
doesn't require the dependency parse. By default, sentence segmentation is
performed by the [`DependencyParser`](/api/dependencyparser), so the
`SentenceSegmenter` lets you implement a simpler, rule-based strategy that
doesn't require a statistical model to be loaded. The component is also
available via the string name `"sentencizer"`. After initialization, it is
typically added to the processing pipeline using
[`nlp.add_pipe`](/api/language#add_pipe).
## SentenceSegmenter.\_\_init\_\_ {#init tag="method"}
Initialize the sentence segmenter. To change the sentence boundary detection
strategy, pass a generator function `strategy` on initialization, or assign a
new strategy to the `.strategy` attribute. Sentence detection strategies should
be generators that take `Doc` objects and yield `Span` objects for each
sentence.
> #### Example
>
> ```python
> # Construction via create_pipe
> sentencizer = nlp.create_pipe("sentencizer")
>
> # Construction from class
> from spacy.pipeline import SentenceSegmenter
> sentencizer = SentenceSegmenter(nlp.vocab)
> ```
| Name | Type | Description |
| ----------- | ------------------- | ----------------------------------------------------------- |
| `vocab` | `Vocab` | The shared vocabulary. |
| `strategy` | unicode / callable | The segmentation strategy to use. Defaults to `"on_punct"`. |
| **RETURNS** | `SentenceSegmenter` | The newly constructed object. |
## SentenceSegmenter.\_\_call\_\_ {#call tag="method"}
Apply the sentence segmenter on a `Doc`. Typically, this happens automatically
after the component has been added to the pipeline using
[`nlp.add_pipe`](/api/language#add_pipe).
> #### Example
>
> ```python
> from spacy.lang.en import English
>
> nlp = English()
> sentencizer = nlp.create_pipe("sentencizer")
> nlp.add_pipe(sentencizer)
> doc = nlp(u"This is a sentence. This is another sentence.")
> assert list(doc.sents) == 2
> ```
| Name | Type | Description |
| ----------- | ----- | ------------------------------------------------------------ |
| `doc` | `Doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. |
| **RETURNS** | `Doc` | The modified `Doc` with added sentence boundaries. |
## SentenceSegmenter.split_on_punct {#split_on_punct tag="staticmethod"}
Split the `Doc` on punctuation characters `.`, `!` and `?`. This is the default
strategy used by the `SentenceSegmenter.`
| Name | Type | Description |
| ---------- | ------ | ------------------------------ |
| `doc` | `Doc` | The `Doc` object to process. |
| **YIELDS** | `Span` | The sentences in the document. |
## Attributes {#attributes}
| Name | Type | Description |
| ---------- | -------- | ------------------------------------------------------------------- |
| `strategy` | callable | The segmentation strategy. Can be overwritten after initialization. |