mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-22 15:24:11 +03:00
1f23c615d7
* Add implementation of batching + backwards compatibility fixes. Tests indicate issue with batch disambiguation for custom singular entity lookups. * Fix tests. Add distinction w.r.t. batch size. * Remove redundant and add new comments. * Adjust comments. Fix variable naming in EL prediction. * Fix mypy errors. * Remove KB entity type config option. Change return types of candidate retrieval functions to Iterable from Iterator. Fix various other issues. * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/kb_base.pyx Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/kb_base.pyx Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Add error messages to NotImplementedErrors. Remove redundant comment. * Fix imports. * Remove redundant comments. * Rename KnowledgeBase to InMemoryLookupKB and BaseKnowledgeBase to KnowledgeBase. * Fix tests. * Update spacy/errors.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Move KB into subdirectory. * Adjust imports after KB move to dedicated subdirectory. * Fix config imports. * Move Candidate + retrieval functions to separate module. Fix other, small issues. * Fix docstrings and error message w.r.t. class names. Fix typing for candidate retrieval functions. * Update spacy/kb/kb_in_memory.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/ml/models/entity_linker.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix typing. * Change typing of mentions to be Span instead of Union[Span, str]. * Update docs. * Update EntityLinker and _architecture docs. * Update website/docs/api/entitylinker.md Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Adjust message for E1046. * Re-add section for Candidate in kb.md, add reference to dedicated page. * Update docs and docstrings. * Re-add section + reference for KnowledgeBase.get_alias_candidates() in docs. * Update spacy/kb/candidate.pyx * Update spacy/kb/kb_in_memory.pyx * Update spacy/pipeline/legacy/entity_linker.py * Remove canididate.md. Remove mistakenly added config snippet in entity_linker.py. Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
402 lines
26 KiB
Markdown
402 lines
26 KiB
Markdown
---
|
|
title: EntityLinker
|
|
tag: class
|
|
source: spacy/pipeline/entity_linker.py
|
|
new: 2.2
|
|
teaser: 'Pipeline component for named entity linking and disambiguation'
|
|
api_base_class: /api/pipe
|
|
api_string_name: entity_linker
|
|
api_trainable: true
|
|
---
|
|
|
|
An `EntityLinker` component disambiguates textual mentions (tagged as named
|
|
entities) to unique identifiers, grounding the named entities into the "real
|
|
world". It requires a `KnowledgeBase`, as well as a function to generate
|
|
plausible candidates from that `KnowledgeBase` given a certain textual mention,
|
|
and a machine learning model to pick the right candidate, given the local
|
|
context of the mention. `EntityLinker` defaults to using the
|
|
[`InMemoryLookupKB`](/api/kb_in_memory) implementation.
|
|
|
|
## Assigned Attributes {#assigned-attributes}
|
|
|
|
Predictions, in the form of knowledge base IDs, will be assigned to
|
|
`Token.ent_kb_id_`.
|
|
|
|
| Location | Value |
|
|
| ------------------ | --------------------------------- |
|
|
| `Token.ent_kb_id` | Knowledge base ID (hash). ~~int~~ |
|
|
| `Token.ent_kb_id_` | Knowledge base ID. ~~str~~ |
|
|
|
|
## Config and implementation {#config}
|
|
|
|
The default config is defined by the pipeline component factory and describes
|
|
how the component should be configured. You can override its settings via the
|
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
|
[`config.cfg` for training](/usage/training#config). See the
|
|
[model architectures](/api/architectures) documentation for details on the
|
|
architectures and their arguments and hyperparameters.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.pipeline.entity_linker import DEFAULT_NEL_MODEL
|
|
> config = {
|
|
> "labels_discard": [],
|
|
> "n_sents": 0,
|
|
> "incl_prior": True,
|
|
> "incl_context": True,
|
|
> "model": DEFAULT_NEL_MODEL,
|
|
> "entity_vector_length": 64,
|
|
> "get_candidates": {'@misc': 'spacy.CandidateGenerator.v1'},
|
|
> "threshold": None,
|
|
> }
|
|
> nlp.add_pipe("entity_linker", config=config)
|
|
> ```
|
|
|
|
| Setting | Description |
|
|
| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ |
|
|
| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ |
|
|
| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ |
|
|
| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ |
|
|
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ |
|
|
| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ |
|
|
| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ |
|
|
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
|
|
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
|
|
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ |
|
|
| `threshold` <Tag variant="new">3.4</Tag> | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ |
|
|
|
|
```python
|
|
%%GITHUB_SPACY/spacy/pipeline/entity_linker.py
|
|
```
|
|
|
|
## EntityLinker.\_\_init\_\_ {#init tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction via add_pipe with default model
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
>
|
|
> # Construction via add_pipe with custom model
|
|
> config = {"model": {"@architectures": "my_el.v1"}}
|
|
> entity_linker = nlp.add_pipe("entity_linker", config=config)
|
|
>
|
|
> # Construction from class
|
|
> from spacy.pipeline import EntityLinker
|
|
> entity_linker = EntityLinker(nlp.vocab, model)
|
|
> ```
|
|
|
|
Create a new pipeline instance. In your application, you would normally use a
|
|
shortcut for this and instantiate the component using its string name and
|
|
[`nlp.add_pipe`](/api/language#add_pipe).
|
|
|
|
Upon construction of the entity linker component, an empty knowledge base is
|
|
constructed with the provided `entity_vector_length`. If you want to use a
|
|
custom knowledge base, you should either call
|
|
[`set_kb`](/api/entitylinker#set_kb) or provide a `kb_loader` in the
|
|
[`initialize`](/api/entitylinker#initialize) call.
|
|
|
|
| Name | Description |
|
|
| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
|
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ |
|
|
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
|
| _keyword-only_ | |
|
|
| `entity_vector_length` | Size of encoding vectors in the KB. ~~int~~ |
|
|
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
|
|
| `labels_discard` | NER labels that will automatically get a `"NIL"` prediction. ~~Iterable[str]~~ |
|
|
| `n_sents` | The number of neighbouring sentences to take into account. ~~int~~ |
|
|
| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. ~~bool~~ |
|
|
| `incl_context` | Whether or not to include the local context in the model. ~~bool~~ |
|
|
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
|
|
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ |
|
|
| `threshold` <Tag variant="new">3.4</Tag> | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ |
|
|
|
|
## EntityLinker.\_\_call\_\_ {#call tag="method"}
|
|
|
|
Apply the pipe to one document. The document is modified in place and returned.
|
|
This usually happens under the hood when the `nlp` object is called on a text
|
|
and all pipeline components are applied to the `Doc` in order. Both
|
|
[`__call__`](/api/entitylinker#call) and [`pipe`](/api/entitylinker#pipe)
|
|
delegate to the [`predict`](/api/entitylinker#predict) and
|
|
[`set_annotations`](/api/entitylinker#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc = nlp("This is a sentence.")
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> # This usually happens under the hood
|
|
> processed = entity_linker(doc)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------- |
|
|
| `doc` | The document to process. ~~Doc~~ |
|
|
| **RETURNS** | The processed document. ~~Doc~~ |
|
|
|
|
## EntityLinker.pipe {#pipe tag="method"}
|
|
|
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
|
when the `nlp` object is called on a text and all pipeline components are
|
|
applied to the `Doc` in order. Both [`__call__`](/api/entitylinker#call) and
|
|
[`pipe`](/api/entitylinker#pipe) delegate to the
|
|
[`predict`](/api/entitylinker#predict) and
|
|
[`set_annotations`](/api/entitylinker#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> for doc in entity_linker.pipe(docs, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------- |
|
|
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
|
| _keyword-only_ | |
|
|
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
|
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
|
|
|
## EntityLinker.set_kb {#set_kb tag="method" new="3"}
|
|
|
|
The `kb_loader` should be a function that takes a `Vocab` instance and creates
|
|
the `KnowledgeBase`, ensuring that the strings of the knowledge base are synced
|
|
with the current vocab.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> def create_kb(vocab):
|
|
> kb = InMemoryLookupKB(vocab, entity_vector_length=128)
|
|
> kb.add_entity(...)
|
|
> kb.add_alias(...)
|
|
> return kb
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> entity_linker.set_kb(create_kb)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------------------------------------------------------------------------------------------- |
|
|
| `kb_loader` | Function that creates a [`KnowledgeBase`](/api/kb) from a `Vocab` instance. ~~Callable[[Vocab], KnowledgeBase]~~ |
|
|
|
|
## EntityLinker.initialize {#initialize tag="method" new="3"}
|
|
|
|
Initialize the component for training. `get_examples` should be a function that
|
|
returns an iterable of [`Example`](/api/example) objects. **At least one example
|
|
should be supplied.** The data examples are used to **initialize the model** of
|
|
the component and can either be the full training data or a representative
|
|
sample. Initialization includes validating the network,
|
|
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
|
setting up the label scheme based on the data. This method is typically called
|
|
by [`Language.initialize`](/api/language#initialize).
|
|
|
|
Optionally, a `kb_loader` argument may be specified to change the internal
|
|
knowledge base. This argument should be a function that takes a `Vocab` instance
|
|
and creates the `KnowledgeBase`, ensuring that the strings of the knowledge base
|
|
are synced with the current vocab.
|
|
|
|
<Infobox variant="warning" title="Changed in v3.0" id="begin_training">
|
|
|
|
This method was previously called `begin_training`.
|
|
|
|
</Infobox>
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> entity_linker.initialize(lambda: examples, nlp=nlp, kb_loader=my_kb)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
|
| _keyword-only_ | |
|
|
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
|
| `kb_loader` | Function that creates a [`KnowledgeBase`](/api/kb) from a `Vocab` instance. ~~Callable[[Vocab], KnowledgeBase]~~ |
|
|
|
|
## EntityLinker.predict {#predict tag="method"}
|
|
|
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
|
modifying them. Returns the KB IDs for each entity in each doc, including `NIL`
|
|
if there is no prediction.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> kb_ids = entity_linker.predict([doc1, doc2])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------------------------------------------------- |
|
|
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
|
| **RETURNS** | The predicted KB identifiers for the entities in the `docs`. ~~List[str]~~ |
|
|
|
|
## EntityLinker.set_annotations {#set_annotations tag="method"}
|
|
|
|
Modify a batch of documents, using pre-computed entity IDs for a list of named
|
|
entities.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> kb_ids = entity_linker.predict([doc1, doc2])
|
|
> entity_linker.set_annotations([doc1, doc2], kb_ids)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------- | --------------------------------------------------------------------------------------------------------------- |
|
|
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
|
| `kb_ids` | The knowledge base identifiers for the entities in the docs, predicted by `EntityLinker.predict`. ~~List[str]~~ |
|
|
|
|
## EntityLinker.update {#update tag="method"}
|
|
|
|
Learn from a batch of [`Example`](/api/example) objects, updating both the
|
|
pipe's entity linking model and context encoder. Delegates to
|
|
[`predict`](/api/entitylinker#predict).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> optimizer = nlp.initialize()
|
|
> losses = entity_linker.update(examples, sgd=optimizer)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
|
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
|
| _keyword-only_ | |
|
|
| `drop` | The dropout rate. ~~float~~ |
|
|
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
|
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
|
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
|
|
|
## EntityLinker.create_optimizer {#create_optimizer tag="method"}
|
|
|
|
Create an optimizer for the pipeline component.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> optimizer = entity_linker.create_optimizer()
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------- |
|
|
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
|
|
|
## EntityLinker.use_params {#use_params tag="method, contextmanager"}
|
|
|
|
Modify the pipe's model, to use the given parameter values. At the end of the
|
|
context, the original parameters are restored.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> with entity_linker.use_params(optimizer.averages):
|
|
> entity_linker.to_disk("/best_model")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------- | -------------------------------------------------- |
|
|
| `params` | The parameter values to use in the model. ~~dict~~ |
|
|
|
|
## EntityLinker.to_disk {#to_disk tag="method"}
|
|
|
|
Serialize the pipe to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> entity_linker.to_disk("/path/to/entity_linker")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
|
|
## EntityLinker.from_disk {#from_disk tag="method"}
|
|
|
|
Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> entity_linker.from_disk("/path/to/entity_linker")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ----------------------------------------------------------------------------------------------- |
|
|
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The modified `EntityLinker` object. ~~EntityLinker~~ |
|
|
|
|
## EntityLinker.to_bytes {#to_bytes tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> entity_linker_bytes = entity_linker.to_bytes()
|
|
> ```
|
|
|
|
Serialize the pipe to a bytestring, including the `KnowledgeBase`.
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The serialized form of the `EntityLinker` object. ~~bytes~~ |
|
|
|
|
## EntityLinker.from_bytes {#from_bytes tag="method"}
|
|
|
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> entity_linker_bytes = entity_linker.to_bytes()
|
|
> entity_linker = nlp.add_pipe("entity_linker")
|
|
> entity_linker.from_bytes(entity_linker_bytes)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| `bytes_data` | The data to load from. ~~bytes~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The `EntityLinker` object. ~~EntityLinker~~ |
|
|
|
|
## Serialization fields {#serialization-fields}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = entity_linker.to_disk("/path", exclude=["vocab"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------- | -------------------------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `cfg` | The config file. You usually don't want to exclude this. |
|
|
| `model` | The binary model data. You usually don't want to exclude this. |
|
|
| `kb` | The knowledge base. You usually don't want to exclude this. |
|