mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 05:31:15 +03:00 
			
		
		
		
	
		
			
				
	
	
	
		
			17 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			17 KiB
		
	
	
	
	
	
	
	
| title | teaser | tag | source | 
|---|---|---|---|
| Lexeme | An entry in the vocabulary | class | spacy/lexeme.pyx | 
A Lexeme has no string context – it's a word type, as opposed to a word token.
It therefore has no part-of-speech tag, dependency parse, or lemma (if
lemmatization depends on the part-of-speech tag).
Lexeme.__init__
Create a Lexeme object.
| Name | Description | 
|---|---|
| vocab | The parent vocabulary. | 
| orth | The orth id of the lexeme. | 
Lexeme.set_flag
Change the value of a boolean flag.
Example
COOL_FLAG = nlp.vocab.add_flag(lambda text: False) nlp.vocab["spaCy"].set_flag(COOL_FLAG, True)
| Name | Description | 
|---|---|
| flag_id | The attribute ID of the flag to set. | 
| value | The new value of the flag. | 
Lexeme.check_flag
Check the value of a boolean flag.
Example
is_my_library = lambda text: text in ["spaCy", "Thinc"] MY_LIBRARY = nlp.vocab.add_flag(is_my_library) assert nlp.vocab["spaCy"].check_flag(MY_LIBRARY) == True
| Name | Description | 
|---|---|
| flag_id | The attribute ID of the flag to query. | 
| RETURNS | The value of the flag. | 
Lexeme.similarity
Compute a semantic similarity estimate. Defaults to cosine over vectors.
Example
apple = nlp.vocab["apple"] orange = nlp.vocab["orange"] apple_orange = apple.similarity(orange) orange_apple = orange.similarity(apple) assert apple_orange == orange_apple
| Name | Description | 
|---|---|
| other | The object to compare with. By default, accepts Doc,Span,TokenandLexemeobjects. | 
| RETURNS | A scalar similarity score. Higher is more similar. | 
Lexeme.has_vector
A boolean value indicating whether a word vector is associated with the lexeme.
Example
apple = nlp.vocab["apple"] assert apple.has_vector
| Name | Description | 
|---|---|
| RETURNS | Whether the lexeme has a vector data attached. | 
Lexeme.vector
A real-valued meaning representation.
Example
apple = nlp.vocab["apple"] assert apple.vector.dtype == "float32" assert apple.vector.shape == (300,)
| Name | Description | 
|---|---|
| RETURNS | A 1-dimensional array representing the lexeme's vector. | 
Lexeme.vector_norm
The L2 norm of the lexeme's vector representation.
Example
apple = nlp.vocab["apple"] pasta = nlp.vocab["pasta"] apple.vector_norm # 7.1346845626831055 pasta.vector_norm # 7.759851932525635 assert apple.vector_norm != pasta.vector_norm
| Name | Description | 
|---|---|
| RETURNS | The L2 norm of the vector representation. | 
Attributes
| Name | Description | 
|---|---|
| vocab | The lexeme's vocabulary. | 
| text | Verbatim text content. | 
| orth | ID of the verbatim text content. | 
| orth_ | Verbatim text content (identical to Lexeme.text). Exists mostly for consistency with the other attributes. | 
| rank | Sequential ID of the lexemes's lexical type, used to index into tables, e.g. for word vectors. | 
| flags | Container of the lexeme's binary flags. | 
| norm | The lexemes's norm, i.e. a normalized form of the lexeme text. | 
| norm_ | The lexemes's norm, i.e. a normalized form of the lexeme text. | 
| lower | Lowercase form of the word. | 
| lower_ | Lowercase form of the word. | 
| shape | Transform of the words's string, to show orthographic features. Alphabetic characters are replaced by xorX, and numeric characters are replaced byd, and sequences of the same character are truncated after length 4. For example,"Xxxx"or"dd". | 
| shape_ | Transform of the word's string, to show orthographic features. Alphabetic characters are replaced by xorX, and numeric characters are replaced byd, and sequences of the same character are truncated after length 4. For example,"Xxxx"or"dd". | 
| prefix | Length-N substring from the start of the word. Defaults to N=1. | 
| prefix_ | Length-N substring from the start of the word. Defaults to N=1. | 
| suffix | Length-N substring from the end of the word. Defaults to N=3. | 
| suffix_ | Length-N substring from the start of the word. Defaults to N=3. | 
| is_alpha | Does the lexeme consist of alphabetic characters? Equivalent to lexeme.text.isalpha(). | 
| is_ascii | Does the lexeme consist of ASCII characters? Equivalent to [any(ord(c) >= 128 for c in lexeme.text)]. | 
| is_digit | Does the lexeme consist of digits? Equivalent to lexeme.text.isdigit(). | 
| is_lower | Is the lexeme in lowercase? Equivalent to lexeme.text.islower(). | 
| is_upper | Is the lexeme in uppercase? Equivalent to lexeme.text.isupper(). | 
| is_title | Is the lexeme in titlecase? Equivalent to lexeme.text.istitle(). | 
| is_punct | Is the lexeme punctuation? | 
| is_left_punct | Is the lexeme a left punctuation mark, e.g. (? | 
| is_right_punct | Is the lexeme a right punctuation mark, e.g. )? | 
| is_space | Does the lexeme consist of whitespace characters? Equivalent to lexeme.text.isspace(). | 
| is_bracket | Is the lexeme a bracket? | 
| is_quote | Is the lexeme a quotation mark? | 
| is_currency2.0.8 | Is the lexeme a currency symbol? | 
| like_url | Does the lexeme resemble a URL? | 
| like_num | Does the lexeme represent a number? e.g. "10.9", "10", "ten", etc. | 
| like_email | Does the lexeme resemble an email address? | 
| is_oov | Is the lexeme out-of-vocabulary (i.e. does it not have a word vector)? | 
| is_stop | Is the lexeme part of a "stop list"? | 
| lang | Language of the parent vocabulary. | 
| lang_ | Language of the parent vocabulary. | 
| prob | Smoothed log probability estimate of the lexeme's word type (context-independent entry in the vocabulary). | 
| cluster | Brown cluster ID. | 
| sentiment | A scalar value indicating the positivity or negativity of the lexeme. |