mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-29 11:26:28 +03:00
3360825e00
Another round of proofreading. All the API docs have been read through and I've grazed the Usage docs.
330 lines
16 KiB
Markdown
330 lines
16 KiB
Markdown
---
|
||
title: Vocab
|
||
teaser: A storage class for vocabulary and other data shared across a language
|
||
tag: class
|
||
source: spacy/vocab.pyx
|
||
---
|
||
|
||
The `Vocab` object provides a lookup table that allows you to access
|
||
[`Lexeme`](/api/lexeme) objects, as well as the
|
||
[`StringStore`](/api/stringstore). It also owns underlying C-data that is shared
|
||
between `Doc` objects.
|
||
|
||
## Vocab.\_\_init\_\_ {#init tag="method"}
|
||
|
||
Create the vocabulary.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.vocab import Vocab
|
||
> vocab = Vocab(strings=["hello", "world"])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `lex_attr_getters` | A dictionary mapping attribute IDs to functions to compute them. Defaults to `None`. ~~Optional[Dict[str, Callable[[str], Any]]]~~ |
|
||
| `strings` | A [`StringStore`](/api/stringstore) that maps strings to hash values, and vice versa, or a list of strings. ~~Union[List[str], StringStore]~~ |
|
||
| `lookups` | A [`Lookups`](/api/lookups) that stores the `lexeme_norm` and other large lookup tables. Defaults to `None`. ~~Optional[Lookups]~~ |
|
||
| `oov_prob` | The default OOV probability. Defaults to `-20.0`. ~~float~~ |
|
||
| `vectors_name` <Tag variant="new">2.2</Tag> | A name to identify the vectors table. ~~str~~ |
|
||
| `writing_system` | A dictionary describing the language's writing system. Typically provided by [`Language.Defaults`](/api/language#defaults). ~~Dict[str, Any]~~ |
|
||
| `get_noun_chunks` | A function that yields base noun phrases used for [`Doc.noun_chunks`](/ap/doc#noun_chunks). ~~Optional[Callable[[Union[Doc, Span], Iterator[Span]]]]~~ |
|
||
|
||
## Vocab.\_\_len\_\_ {#len tag="method"}
|
||
|
||
Get the current number of lexemes in the vocabulary.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("This is a sentence.")
|
||
> assert len(nlp.vocab) > 0
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------------ |
|
||
| **RETURNS** | The number of lexemes in the vocabulary. ~~int~~ |
|
||
|
||
## Vocab.\_\_getitem\_\_ {#getitem tag="method"}
|
||
|
||
Retrieve a lexeme, given an int ID or a string. If a previously unseen string is
|
||
given, a new lexeme is created and stored.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> apple = nlp.vocab.strings["apple"]
|
||
> assert nlp.vocab[apple] == nlp.vocab["apple"]
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------ |
|
||
| `id_or_string` | The hash value of a word, or its string. ~~Union[int, str]~~ |
|
||
| **RETURNS** | The lexeme indicated by the given ID. ~~Lexeme~~ |
|
||
|
||
## Vocab.\_\_iter\_\_ {#iter tag="method"}
|
||
|
||
Iterate over the lexemes in the vocabulary.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> stop_words = (lex for lex in nlp.vocab if lex.is_stop)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | -------------------------------------- |
|
||
| **YIELDS** | An entry in the vocabulary. ~~Lexeme~~ |
|
||
|
||
## Vocab.\_\_contains\_\_ {#contains tag="method"}
|
||
|
||
Check whether the string has an entry in the vocabulary. To get the ID for a
|
||
given string, you need to look it up in
|
||
[`vocab.strings`](/api/vocab#attributes).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> apple = nlp.vocab.strings["apple"]
|
||
> oov = nlp.vocab.strings["dskfodkfos"]
|
||
> assert apple in nlp.vocab
|
||
> assert oov not in nlp.vocab
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------------------------- |
|
||
| `string` | The ID string. ~~str~~ |
|
||
| **RETURNS** | Whether the string has an entry in the vocabulary. ~~bool~~ |
|
||
|
||
## Vocab.add_flag {#add_flag tag="method"}
|
||
|
||
Set a new boolean flag to words in the vocabulary. The `flag_getter` function
|
||
will be called over the words currently in the vocab, and then applied to new
|
||
words as they occur. You'll then be able to access the flag value on each token,
|
||
using `token.check_flag(flag_id)`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> def is_my_product(text):
|
||
> products = ["spaCy", "Thinc", "displaCy"]
|
||
> return text in products
|
||
>
|
||
> MY_PRODUCT = nlp.vocab.add_flag(is_my_product)
|
||
> doc = nlp("I like spaCy")
|
||
> assert doc[2].check_flag(MY_PRODUCT) == True
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `flag_getter` | A function that takes the lexeme text and returns the boolean flag value. ~~Callable[[str], bool]~~ |
|
||
| `flag_id` | An integer between `1` and `63` (inclusive), specifying the bit at which the flag will be stored. If `-1`, the lowest available bit will be chosen. ~~int~~ |
|
||
| **RETURNS** | The integer ID by which the flag value can be checked. ~~int~~ |
|
||
|
||
## Vocab.reset_vectors {#reset_vectors tag="method" new="2"}
|
||
|
||
Drop the current vector table. Because all vectors must be the same width, you
|
||
have to call this to change the size of the vectors. Only one of the `width` and
|
||
`shape` keyword arguments can be specified.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.reset_vectors(width=300)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ---------------------- |
|
||
| _keyword-only_ | |
|
||
| `width` | The new width. ~~int~~ |
|
||
| `shape` | The new shape. ~~int~~ |
|
||
|
||
## Vocab.prune_vectors {#prune_vectors tag="method" new="2"}
|
||
|
||
Reduce the current vector table to `nr_row` unique entries. Words mapped to the
|
||
discarded vectors will be remapped to the closest vector among those remaining.
|
||
For example, suppose the original table had vectors for the words:
|
||
`['sat', 'cat', 'feline', 'reclined']`. If we prune the vector table to, two
|
||
rows, we would discard the vectors for "feline" and "reclined". These words
|
||
would then be remapped to the closest remaining vector – so "feline" would have
|
||
the same vector as "cat", and "reclined" would have the same vector as "sat".
|
||
The similarities are judged by cosine. The original vectors may be large, so the
|
||
cosines are calculated in minibatches to reduce memory usage.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.prune_vectors(10000)
|
||
> assert len(nlp.vocab.vectors) <= 1000
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `nr_row` | The number of rows to keep in the vector table. ~~int~~ |
|
||
| `batch_size` | Batch of vectors for calculating the similarities. Larger batch sizes might be faster, while temporarily requiring more memory. ~~int~~ |
|
||
| **RETURNS** | A dictionary keyed by removed words mapped to `(string, score)` tuples, where `string` is the entry the removed word was mapped to, and `score` the similarity score between the two words. ~~Dict[str, Tuple[str, float]]~~ |
|
||
|
||
## Vocab.get_vector {#get_vector tag="method" new="2"}
|
||
|
||
Retrieve a vector for a word in the vocabulary. Words can be looked up by string
|
||
or hash value. If no vectors data is loaded, a `ValueError` is raised. If `minn`
|
||
is defined, then the resulting vector uses [FastText](https://fasttext.cc/)'s
|
||
subword features by average over n-grams of `orth` (introduced in spaCy `v2.1`).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.get_vector("apple")
|
||
> nlp.vocab.get_vector("apple", minn=1, maxn=5)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------------------------------- | ---------------------------------------------------------------------------------------------------------------------- |
|
||
| `orth` | The hash value of a word, or its unicode string. ~~Union[int, str]~~ |
|
||
| `minn` <Tag variant="new">2.1</Tag> | Minimum n-gram length used for FastText's n-gram computation. Defaults to the length of `orth`. ~~int~~ |
|
||
| `maxn` <Tag variant="new">2.1</Tag> | Maximum n-gram length used for FastText's n-gram computation. Defaults to the length of `orth`. ~~int~~ |
|
||
| **RETURNS** | A word vector. Size and shape are determined by the `Vocab.vectors` instance. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
|
||
## Vocab.set_vector {#set_vector tag="method" new="2"}
|
||
|
||
Set a vector for a word in the vocabulary. Words can be referenced by string
|
||
or hash value.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.set_vector("apple", array([...]))
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------- | -------------------------------------------------------------------- |
|
||
| `orth` | The hash value of a word, or its unicode string. ~~Union[int, str]~~ |
|
||
| `vector` | The vector to set. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
|
||
## Vocab.has_vector {#has_vector tag="method" new="2"}
|
||
|
||
Check whether a word has a vector. Returns `False` if no vectors are loaded.
|
||
Words can be looked up by string or hash value.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> if nlp.vocab.has_vector("apple"):
|
||
> vector = nlp.vocab.get_vector("apple")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------------------------------------------- |
|
||
| `orth` | The hash value of a word, or its unicode string. ~~Union[int, str]~~ |
|
||
| **RETURNS** | Whether the word has a vector. ~~bool~~ |
|
||
|
||
## Vocab.to_disk {#to_disk tag="method" new="2"}
|
||
|
||
Save the current state to a directory.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.to_disk("/path/to/vocab")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
|
||
## Vocab.from_disk {#from_disk tag="method" new="2"}
|
||
|
||
Loads state from a directory. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.vocab import Vocab
|
||
> vocab = Vocab().from_disk("/path/to/vocab")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | The modified `Vocab` object. ~~Vocab~~ |
|
||
|
||
## Vocab.to_bytes {#to_bytes tag="method"}
|
||
|
||
Serialize the current state to a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vocab_bytes = nlp.vocab.to_bytes()
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | The serialized form of the `Vocab` object. ~~Vocab~~ |
|
||
|
||
## Vocab.from_bytes {#from_bytes tag="method"}
|
||
|
||
Load state from a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.vocab import Vocab
|
||
> vocab_bytes = nlp.vocab.to_bytes()
|
||
> vocab = Vocab()
|
||
> vocab.from_bytes(vocab_bytes)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | The `Vocab` object. ~~Vocab~~ |
|
||
|
||
## Attributes {#attributes}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> apple_id = nlp.vocab.strings["apple"]
|
||
> assert type(apple_id) == int
|
||
> PERSON = nlp.vocab.strings["PERSON"]
|
||
> assert type(PERSON) == int
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| --------------------------------------------- | ------------------------------------------------------------------------------- |
|
||
| `strings` | A table managing the string-to-int mapping. ~~StringStore~~ |
|
||
| `vectors` <Tag variant="new">2</Tag> | A table associating word IDs to word vectors. ~~Vectors~~ |
|
||
| `vectors_length` | Number of dimensions for each word vector. ~~int~~ |
|
||
| `lookups` | The available lookup tables in this vocab. ~~Lookups~~ |
|
||
| `writing_system` <Tag variant="new">2.1</Tag> | A dict with information about the language's writing system. ~~Dict[str, Any]~~ |
|
||
|
||
## Serialization fields {#serialization-fields}
|
||
|
||
During serialization, spaCy will export several data fields used to restore
|
||
different aspects of the object. If needed, you can exclude them from
|
||
serialization by passing in the string names via the `exclude` argument.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> data = vocab.to_bytes(exclude=["strings", "vectors"])
|
||
> vocab.from_disk("./vocab", exclude=["strings"])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| --------- | ----------------------------------------------------- |
|
||
| `strings` | The strings in the [`StringStore`](/api/stringstore). |
|
||
| `lexemes` | The lexeme data. |
|
||
| `vectors` | The word vectors, if available. |
|
||
| `lookups` | The lookup tables, if available. |
|