mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
43b960c01b
* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
105 lines
3.0 KiB
Cython
105 lines
3.0 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
|
from typing import Optional, Iterable
|
|
from thinc.api import CosineDistance, to_categorical, get_array_module, Model, Config
|
|
|
|
from ..syntax.nn_parser cimport Parser
|
|
from ..syntax.arc_eager cimport ArcEager
|
|
|
|
from .functions import merge_subtokens
|
|
from ..language import Language
|
|
from ..syntax import nonproj
|
|
|
|
|
|
default_model_config = """
|
|
[model]
|
|
@architectures = "spacy.TransitionBasedParser.v1"
|
|
nr_feature_tokens = 8
|
|
hidden_width = 64
|
|
maxout_pieces = 2
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
pretrained_vectors = null
|
|
width = 96
|
|
depth = 4
|
|
embed_size = 2000
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
subword_features = true
|
|
dropout = null
|
|
"""
|
|
DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
|
|
|
|
|
|
@Language.factory(
|
|
"parser",
|
|
assigns=["token.dep", "token.is_sent_start", "doc.sents"],
|
|
default_config={
|
|
"moves": None,
|
|
"update_with_oracle_cut_size": 100,
|
|
"multitasks": [],
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"model": DEFAULT_PARSER_MODEL,
|
|
}
|
|
)
|
|
def make_parser(
|
|
nlp: Language,
|
|
name: str,
|
|
model: Model,
|
|
moves: Optional[list],
|
|
update_with_oracle_cut_size: int,
|
|
multitasks: Iterable,
|
|
learn_tokens: bool,
|
|
min_action_freq: int
|
|
):
|
|
return DependencyParser(
|
|
nlp.vocab,
|
|
model,
|
|
name,
|
|
moves=moves,
|
|
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
|
multitasks=multitasks,
|
|
learn_tokens=learn_tokens,
|
|
min_action_freq=min_action_freq
|
|
)
|
|
|
|
|
|
cdef class DependencyParser(Parser):
|
|
"""Pipeline component for dependency parsing.
|
|
|
|
DOCS: https://spacy.io/api/dependencyparser
|
|
"""
|
|
# cdef classes can't have decorators, so we're defining this here
|
|
TransitionSystem = ArcEager
|
|
|
|
@property
|
|
def postprocesses(self):
|
|
output = [nonproj.deprojectivize]
|
|
if self.cfg.get("learn_tokens") is True:
|
|
output.append(merge_subtokens)
|
|
return tuple(output)
|
|
|
|
def add_multitask_objective(self, mt_component):
|
|
self._multitasks.append(mt_component)
|
|
|
|
def init_multitask_objectives(self, get_examples, pipeline, sgd=None, **cfg):
|
|
# TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ?
|
|
for labeller in self._multitasks:
|
|
labeller.model.set_dim("nO", len(self.labels))
|
|
if labeller.model.has_ref("output_layer"):
|
|
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
|
|
labeller.begin_training(get_examples, pipeline=pipeline, sgd=sgd)
|
|
|
|
@property
|
|
def labels(self):
|
|
labels = set()
|
|
# Get the labels from the model by looking at the available moves
|
|
for move in self.move_names:
|
|
if "-" in move:
|
|
label = move.split("-")[1]
|
|
if "||" in label:
|
|
label = label.split("||")[1]
|
|
labels.add(label)
|
|
return tuple(sorted(labels))
|