spaCy/website/docs/api/phrasematcher.md
Connor Brinton 657af5f91f
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167)
* 🚨 Ignore all existing Mypy errors

* 🏗 Add Mypy check to CI

* Add types-mock and types-requests as dev requirements

* Add additional type ignore directives

* Add types packages to dev-only list in reqs test

* Add types-dataclasses for python 3.6

* Add ignore to pretrain

* 🏷 Improve type annotation on `run_command` helper

The `run_command` helper previously declared that it returned an
`Optional[subprocess.CompletedProcess]`, but it isn't actually possible
for the function to return `None`. These changes modify the type
annotation of the `run_command` helper and remove all now-unnecessary
`# type: ignore` directives.

* 🔧 Allow variable type redefinition in limited contexts

These changes modify how Mypy is configured to allow variables to have
their type automatically redefined under certain conditions. The Mypy
documentation contains the following example:

```python
def process(items: List[str]) -> None:
    # 'items' has type List[str]
    items = [item.split() for item in items]
    # 'items' now has type List[List[str]]
    ...
```

This configuration change is especially helpful in reducing the number
of `# type: ignore` directives needed to handle the common pattern of:
* Accepting a filepath as a string
* Overwriting the variable using `filepath = ensure_path(filepath)`

These changes enable redefinition and remove all `# type: ignore`
directives rendered redundant by this change.

* 🏷 Add type annotation to converters mapping

* 🚨 Fix Mypy error in convert CLI argument verification

* 🏷 Improve type annotation on `resolve_dot_names` helper

* 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors`

* 🏷 Add type annotations for more `Vocab` attributes

* 🏷 Add loose type annotation for gold data compilation

* 🏷 Improve `_format_labels` type annotation

* 🏷 Fix `get_lang_class` type annotation

* 🏷 Loosen return type of `Language.evaluate`

* 🏷 Don't accept `Scorer` in `handle_scores_per_type`

* 🏷 Add `string_to_list` overloads

* 🏷 Fix non-Optional command-line options

* 🙈 Ignore redefinition of `wandb_logger` in `loggers.py`

*  Install `typing_extensions` in Python 3.8+

The `typing_extensions` package states that it should be used when
"writing code that must be compatible with multiple Python versions".
Since SpaCy needs to support multiple Python versions, it should be used
when newer `typing` module members are required. One example of this is
`Literal`, which is available starting with Python 3.8.

Previously SpaCy tried to import `Literal` from `typing`, falling back
to `typing_extensions` if the import failed. However, Mypy doesn't seem
to be able to understand what `Literal` means when the initial import
means. Therefore, these changes modify how `compat` imports `Literal` by
always importing it from `typing_extensions`.

These changes also modify how `typing_extensions` is installed, so that
it is a requirement for all Python versions, including those greater
than or equal to 3.8.

* 🏷 Improve type annotation for `Language.pipe`

These changes add a missing overload variant to the type signature of
`Language.pipe`. Additionally, the type signature is enhanced to allow
type checkers to differentiate between the two overload variants based
on the `as_tuple` parameter.

Fixes #8772

*  Don't install `typing-extensions` in Python 3.8+

After more detailed analysis of how to implement Python version-specific
type annotations using SpaCy, it has been determined that by branching
on a comparison against `sys.version_info` can be statically analyzed by
Mypy well enough to enable us to conditionally use
`typing_extensions.Literal`. This means that we no longer need to
install `typing_extensions` for Python versions greater than or equal to
3.8! 🎉

These changes revert previous changes installing `typing-extensions`
regardless of Python version and modify how we import the `Literal` type
to ensure that Mypy treats it properly.

* resolve mypy errors for Strict pydantic types

* refactor code to avoid missing return statement

* fix types of convert CLI command

* avoid list-set confustion in debug_data

* fix typo and formatting

* small fixes to avoid type ignores

* fix types in profile CLI command and make it more efficient

* type fixes in projects CLI

* put one ignore back

* type fixes for render

* fix render types - the sequel

* fix BaseDefault in language definitions

* fix type of noun_chunks iterator - yields tuple instead of span

* fix types in language-specific modules

* 🏷 Expand accepted inputs of `get_string_id`

`get_string_id` accepts either a string (in which case it returns its 
ID) or an ID (in which case it immediately returns the ID). These 
changes extend the type annotation of `get_string_id` to indicate that 
it can accept either strings or IDs.

* 🏷 Handle override types in `combine_score_weights`

The `combine_score_weights` function allows users to pass an `overrides` 
mapping to override data extracted from the `weights` argument. Since it 
allows `Optional` dictionary values, the return value may also include 
`Optional` dictionary values.

These changes update the type annotations for `combine_score_weights` to 
reflect this fact.

* 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer`

* 🏷 Fix redefinition of `wandb_logger`

These changes fix the redefinition of `wandb_logger` by giving a 
separate name to each `WandbLogger` version. For 
backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` 
as `wandb_logger` for now.

* more fixes for typing in language

* type fixes in model definitions

* 🏷 Annotate `_RandomWords.probs` as `NDArray`

* 🏷 Annotate `tok2vec` layers to help Mypy

* 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6

Also remove an import that I forgot to move to the top of the module 😅

* more fixes for matchers and other pipeline components

* quick fix for entity linker

* fixing types for spancat, textcat, etc

* bugfix for tok2vec

* type annotations for scorer

* add runtime_checkable for Protocol

* type and import fixes in tests

* mypy fixes for training utilities

* few fixes in util

* fix import

* 🐵 Remove unused `# type: ignore` directives

* 🏷 Annotate `Language._components`

* 🏷 Annotate `spacy.pipeline.Pipe`

* add doc as property to span.pyi

* small fixes and cleanup

* explicit type annotations instead of via comment

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 15:21:40 +02:00

8.9 KiB
Raw Blame History

title teaser tag source new
PhraseMatcher Match sequences of tokens, based on documents class spacy/matcher/phrasematcher.pyx 2

The PhraseMatcher lets you efficiently match large terminology lists. While the Matcher lets you match sequences based on lists of token descriptions, the PhraseMatcher accepts match patterns in the form of Doc objects. See the usage guide for examples.

PhraseMatcher.__init__

Create the rule-based PhraseMatcher. Setting a different attr to match on will change the token attributes that will be compared to determine a match. By default, the incoming Doc is checked for sequences of tokens with the same ORTH value, i.e. the verbatim token text. Matching on the attribute LOWER will result in case-insensitive matching, since only the lowercase token texts are compared. In theory, it's also possible to match on sequences of the same part-of-speech tags or dependency labels.

If validate=True is set, additional validation is performed when pattern are added. At the moment, it will check whether a Doc has attributes assigned that aren't necessary to produce the matches (for example, part-of-speech tags if the PhraseMatcher matches on the token text). Since this can often lead to significantly worse performance when creating the pattern, a UserWarning will be shown.

Example

from spacy.matcher import PhraseMatcher
matcher = PhraseMatcher(nlp.vocab)
Name Description
vocab The vocabulary object, which must be shared with the documents the matcher will operate on. Vocab
attr 2.1 The token attribute to match on. Defaults to ORTH, i.e. the verbatim token text. Union[int, str]
validate 2.1 Validate patterns added to the matcher. bool

PhraseMatcher.__call__

Find all token sequences matching the supplied patterns on the Doc or Span.

Example

from spacy.matcher import PhraseMatcher

matcher = PhraseMatcher(nlp.vocab)
matcher.add("OBAMA", [nlp("Barack Obama")])
doc = nlp("Barack Obama lifts America one last time in emotional farewell")
matches = matcher(doc)
Name Description
doclike The Doc or Span to match over. Union[Doc, Span]
keyword-only
as_spans 3 Instead of tuples, return a list of Span objects of the matches, with the match_id assigned as the span label. Defaults to False. bool
RETURNS A list of (match_id, start, end) tuples, describing the matches. A match tuple describes a span doc[start:end]. The match_id is the ID of the added match pattern. If as_spans is set to True, a list of Span objects is returned instead. Union[List[Tuple[int, int, int]], List[Span]]

Because spaCy stores all strings as integers, the match_id you get back will be an integer, too but you can always get the string representation by looking it up in the vocabulary's StringStore, i.e. nlp.vocab.strings:

match_id_string = nlp.vocab.strings[match_id]

PhraseMatcher.__len__

Get the number of rules added to the matcher. Note that this only returns the number of rules (identical with the number of IDs), not the number of individual patterns.

Example

  matcher = PhraseMatcher(nlp.vocab)
  assert len(matcher) == 0
  matcher.add("OBAMA", [nlp("Barack Obama")])
  assert len(matcher) == 1
Name Description
RETURNS The number of rules. int

PhraseMatcher.__contains__

Check whether the matcher contains rules for a match ID.

Example

  matcher = PhraseMatcher(nlp.vocab)
  assert "OBAMA" not in matcher
  matcher.add("OBAMA", [nlp("Barack Obama")])
  assert "OBAMA" in matcher
Name Description
key The match ID. str
RETURNS Whether the matcher contains rules for this match ID. bool

PhraseMatcher.add

Add a rule to the matcher, consisting of an ID key, one or more patterns, and a callback function to act on the matches. The callback function will receive the arguments matcher, doc, i and matches. If a pattern already exists for the given ID, the patterns will be extended. An on_match callback will be overwritten.

Example

  def on_match(matcher, doc, id, matches):
      print('Matched!', matches)

  matcher = PhraseMatcher(nlp.vocab)
  matcher.add("OBAMA", [nlp("Barack Obama")], on_match=on_match)
  matcher.add("HEALTH", [nlp("health care reform"), nlp("healthcare reform")], on_match=on_match)
  doc = nlp("Barack Obama urges Congress to find courage to defend his healthcare reforms")
  matches = matcher(doc)

As of spaCy v3.0, PhraseMatcher.add takes a list of patterns as the second argument (instead of a variable number of arguments). The on_match callback becomes an optional keyword argument.

patterns = [nlp("health care reform"), nlp("healthcare reform")]
- matcher.add("HEALTH", on_match, *patterns)
+ matcher.add("HEALTH", patterns, on_match=on_match)
Name Description
key An ID for the thing you're matching. str
docs Doc objects of the phrases to match. List[Doc]
keyword-only
on_match Callback function to act on matches. Takes the arguments matcher, doc, i and matches. Optional[CallableMatcher, Doc, int, List[tuple], Any

PhraseMatcher.remove

Remove a rule from the matcher by match ID. A KeyError is raised if the key does not exist.

Example

matcher = PhraseMatcher(nlp.vocab)
matcher.add("OBAMA", [nlp("Barack Obama")])
assert "OBAMA" in matcher
matcher.remove("OBAMA")
assert "OBAMA" not in matcher
Name Description
key The ID of the match rule. str