mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-07 15:56:32 +03:00
3711af74e5
* Add tokenizer option to allow Matcher handling for all rules
Add tokenizer option `with_faster_rules_heuristics` that determines
whether the special cases applied by the internal `Matcher` are filtered
by whether they contain affixes or space. If `True` (default), the rules
are filtered to prioritize speed over rare edge cases. If `False`, all
rules are included in the final `Matcher`-based pass over the doc.
* Reset all caches when reloading special cases
* Revert "Reset all caches when reloading special cases"
This reverts commit 4ef6bd171d
.
* Initialize max_length properly
* Add new tag to API docs
* Rename to faster heuristics
265 lines
15 KiB
Markdown
265 lines
15 KiB
Markdown
---
|
|
title: Tokenizer
|
|
teaser: Segment text into words, punctuations marks, etc.
|
|
tag: class
|
|
source: spacy/tokenizer.pyx
|
|
---
|
|
|
|
> #### Default config
|
|
>
|
|
> ```ini
|
|
> [nlp.tokenizer]
|
|
> @tokenizers = "spacy.Tokenizer.v1"
|
|
> ```
|
|
|
|
Segment text, and create `Doc` objects with the discovered segment boundaries.
|
|
For a deeper understanding, see the docs on
|
|
[how spaCy's tokenizer works](/usage/linguistic-features#how-tokenizer-works).
|
|
The tokenizer is typically created automatically when a
|
|
[`Language`](/api/language) subclass is initialized and it reads its settings
|
|
like punctuation and special case rules from the
|
|
[`Language.Defaults`](/api/language#defaults) provided by the language subclass.
|
|
|
|
## Tokenizer.\_\_init\_\_ {#init tag="method"}
|
|
|
|
Create a `Tokenizer` to create `Doc` objects given unicode text. For examples of
|
|
how to construct a custom tokenizer with different tokenization rules, see the
|
|
[usage documentation](https://spacy.io/usage/linguistic-features#native-tokenizers).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction 1
|
|
> from spacy.tokenizer import Tokenizer
|
|
> from spacy.lang.en import English
|
|
> nlp = English()
|
|
> # Create a blank Tokenizer with just the English vocab
|
|
> tokenizer = Tokenizer(nlp.vocab)
|
|
>
|
|
> # Construction 2
|
|
> from spacy.lang.en import English
|
|
> nlp = English()
|
|
> # Create a Tokenizer with the default settings for English
|
|
> # including punctuation rules and exceptions
|
|
> tokenizer = nlp.tokenizer
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | A storage container for lexical types. ~~Vocab~~ |
|
|
| `rules` | Exceptions and special-cases for the tokenizer. ~~Optional[Dict[str, List[Dict[int, str]]]]~~ |
|
|
| `prefix_search` | A function matching the signature of `re.compile(string).search` to match prefixes. ~~Optional[Callable[[str], Optional[Match]]]~~ |
|
|
| `suffix_search` | A function matching the signature of `re.compile(string).search` to match suffixes. ~~Optional[Callable[[str], Optional[Match]]]~~ |
|
|
| `infix_finditer` | A function matching the signature of `re.compile(string).finditer` to find infixes. ~~Optional[Callable[[str], Iterator[Match]]]~~ |
|
|
| `token_match` | A function matching the signature of `re.compile(string).match` to find token matches. ~~Optional[Callable[[str], Optional[Match]]]~~ |
|
|
| `url_match` | A function matching the signature of `re.compile(string).match` to find token matches after considering prefixes and suffixes. ~~Optional[Callable[[str], Optional[Match]]]~~ |
|
|
| `faster_heuristics` <Tag variant="new">3.3.0</Tag> | Whether to restrict the final `Matcher`-based pass for rules to those containing affixes or space. Defaults to `True`. ~~bool~~ |
|
|
|
|
## Tokenizer.\_\_call\_\_ {#call tag="method"}
|
|
|
|
Tokenize a string.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokens = tokenizer("This is a sentence")
|
|
> assert len(tokens) == 4
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ----------------------------------------------- |
|
|
| `string` | The string to tokenize. ~~str~~ |
|
|
| **RETURNS** | A container for linguistic annotations. ~~Doc~~ |
|
|
|
|
## Tokenizer.pipe {#pipe tag="method"}
|
|
|
|
Tokenize a stream of texts.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> texts = ["One document.", "...", "Lots of documents"]
|
|
> for doc in tokenizer.pipe(texts, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------------ | ------------------------------------------------------------------------------------ |
|
|
| `texts` | A sequence of unicode texts. ~~Iterable[str]~~ |
|
|
| `batch_size` | The number of texts to accumulate in an internal buffer. Defaults to `1000`. ~~int~~ |
|
|
| **YIELDS** | The tokenized `Doc` objects, in order. ~~Doc~~ |
|
|
|
|
## Tokenizer.find_infix {#find_infix tag="method"}
|
|
|
|
Find internal split points of the string.
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `string` | The string to split. ~~str~~ |
|
|
| **RETURNS** | A list of `re.MatchObject` objects that have `.start()` and `.end()` methods, denoting the placement of internal segment separators, e.g. hyphens. ~~List[Match]~~ |
|
|
|
|
## Tokenizer.find_prefix {#find_prefix tag="method"}
|
|
|
|
Find the length of a prefix that should be segmented from the string, or `None`
|
|
if no prefix rules match.
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------ |
|
|
| `string` | The string to segment. ~~str~~ |
|
|
| **RETURNS** | The length of the prefix if present, otherwise `None`. ~~Optional[int]~~ |
|
|
|
|
## Tokenizer.find_suffix {#find_suffix tag="method"}
|
|
|
|
Find the length of a suffix that should be segmented from the string, or `None`
|
|
if no suffix rules match.
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------ |
|
|
| `string` | The string to segment. ~~str~~ |
|
|
| **RETURNS** | The length of the suffix if present, otherwise `None`. ~~Optional[int]~~ |
|
|
|
|
## Tokenizer.add_special_case {#add_special_case tag="method"}
|
|
|
|
Add a special-case tokenization rule. This mechanism is also used to add custom
|
|
tokenizer exceptions to the language data. See the usage guide on the
|
|
[languages data](/usage/linguistic-features#language-data) and
|
|
[tokenizer special cases](/usage/linguistic-features#special-cases) for more
|
|
details and examples.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.attrs import ORTH, NORM
|
|
> case = [{ORTH: "do"}, {ORTH: "n't", NORM: "not"}]
|
|
> tokenizer.add_special_case("don't", case)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `string` | The string to specially tokenize. ~~str~~ |
|
|
| `token_attrs` | A sequence of dicts, where each dict describes a token and its attributes. The `ORTH` fields of the attributes must exactly match the string when they are concatenated. ~~Iterable[Dict[int, str]]~~ |
|
|
|
|
## Tokenizer.explain {#explain tag="method"}
|
|
|
|
Tokenize a string with a slow debugging tokenizer that provides information
|
|
about which tokenizer rule or pattern was matched for each token. The tokens
|
|
produced are identical to `Tokenizer.__call__` except for whitespace tokens.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tok_exp = nlp.tokenizer.explain("(don't)")
|
|
> assert [t[0] for t in tok_exp] == ["PREFIX", "SPECIAL-1", "SPECIAL-2", "SUFFIX"]
|
|
> assert [t[1] for t in tok_exp] == ["(", "do", "n't", ")"]
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------------------------------------------------------- |
|
|
| `string` | The string to tokenize with the debugging tokenizer. ~~str~~ |
|
|
| **RETURNS** | A list of `(pattern_string, token_string)` tuples. ~~List[Tuple[str, str]]~~ |
|
|
|
|
## Tokenizer.to_disk {#to_disk tag="method"}
|
|
|
|
Serialize the tokenizer to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokenizer = Tokenizer(nlp.vocab)
|
|
> tokenizer.to_disk("/path/to/tokenizer")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
|
|
## Tokenizer.from_disk {#from_disk tag="method"}
|
|
|
|
Load the tokenizer from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokenizer = Tokenizer(nlp.vocab)
|
|
> tokenizer.from_disk("/path/to/tokenizer")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ----------------------------------------------------------------------------------------------- |
|
|
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The modified `Tokenizer` object. ~~Tokenizer~~ |
|
|
|
|
## Tokenizer.to_bytes {#to_bytes tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokenizer = tokenizer(nlp.vocab)
|
|
> tokenizer_bytes = tokenizer.to_bytes()
|
|
> ```
|
|
|
|
Serialize the tokenizer to a bytestring.
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The serialized form of the `Tokenizer` object. ~~bytes~~ |
|
|
|
|
## Tokenizer.from_bytes {#from_bytes tag="method"}
|
|
|
|
Load the tokenizer from a bytestring. Modifies the object in place and returns
|
|
it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokenizer_bytes = tokenizer.to_bytes()
|
|
> tokenizer = Tokenizer(nlp.vocab)
|
|
> tokenizer.from_bytes(tokenizer_bytes)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| `bytes_data` | The data to load from. ~~bytes~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The `Tokenizer` object. ~~Tokenizer~~ |
|
|
|
|
## Attributes {#attributes}
|
|
|
|
| Name | Description |
|
|
| ---------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | The vocab object of the parent `Doc`. ~~Vocab~~ |
|
|
| `prefix_search` | A function to find segment boundaries from the start of a string. Returns the length of the segment, or `None`. ~~Optional[Callable[[str], Optional[Match]]]~~ |
|
|
| `suffix_search` | A function to find segment boundaries from the end of a string. Returns the length of the segment, or `None`. ~~Optional[Callable[[str], Optional[Match]]]~~ |
|
|
| `infix_finditer` | A function to find internal segment separators, e.g. hyphens. Returns a (possibly empty) sequence of `re.MatchObject` objects. ~~Optional[Callable[[str], Iterator[Match]]]~~ |
|
|
| `token_match` | A function matching the signature of `re.compile(string).match` to find token matches. Returns an `re.MatchObject` or `None`. ~~Optional[Callable[[str], Optional[Match]]]~~ |
|
|
| `rules` | A dictionary of tokenizer exceptions and special cases. ~~Optional[Dict[str, List[Dict[int, str]]]]~~ |
|
|
|
|
## Serialization fields {#serialization-fields}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = tokenizer.to_bytes(exclude=["vocab", "exceptions"])
|
|
> tokenizer.from_disk("./data", exclude=["token_match"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------------- | --------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `prefix_search` | The prefix rules. |
|
|
| `suffix_search` | The suffix rules. |
|
|
| `infix_finditer` | The infix rules. |
|
|
| `token_match` | The token match expression. |
|
|
| `exceptions` | The tokenizer exception rules. |
|