mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 10:14:07 +03:00
310 lines
16 KiB
Markdown
310 lines
16 KiB
Markdown
---
|
||
title: EntityLinker
|
||
tag: class
|
||
source: spacy/pipeline/entity_linker.py
|
||
new: 2.2
|
||
teaser: 'Pipeline component for named entity linking and disambiguation'
|
||
api_base_class: /api/pipe
|
||
api_string_name: entity_linker
|
||
api_trainable: true
|
||
---
|
||
|
||
## Config and implementation {#config}
|
||
|
||
The default config is defined by the pipeline component factory and describes
|
||
how the component should be configured. You can override its settings via the
|
||
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||
[`config.cfg` for training](/usage/training#config). See the
|
||
[model architectures](/api/architectures) documentation for details on the
|
||
architectures and their arguments and hyperparameters.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.pipeline.entity_linker import DEFAULT_NEL_MODEL
|
||
> config = {
|
||
> "kb": None,
|
||
> "labels_discard": [],
|
||
> "incl_prior": True,
|
||
> "incl_context": True,
|
||
> "model": DEFAULT_NEL_MODEL,
|
||
> }
|
||
> nlp.add_pipe("entity_linker", config=config)
|
||
> ```
|
||
|
||
| Setting | Type | Description | Default |
|
||
| ---------------- | ------------------------------------------ | ----------------- | ----------------------------------------------- |
|
||
| `kb` | `KnowledgeBase` | <!-- TODO: --> | `None` |
|
||
| `labels_discard` | `Iterable[str]` | <!-- TODO: --> | `[]` |
|
||
| `incl_prior` | bool | <!-- TODO: --> | `True` |
|
||
| `incl_context` | bool | <!-- TODO: --> | `True` |
|
||
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The model to use. | [EntityLinker](/api/architectures#EntityLinker) |
|
||
|
||
```python
|
||
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/entity_linker.py
|
||
```
|
||
|
||
## EntityLinker.\_\_init\_\_ {#init tag="method"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> # Construction via add_pipe with default model
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
>
|
||
> # Construction via add_pipe with custom model
|
||
> config = {"model": {"@architectures": "my_el"}}
|
||
> entity_linker = nlp.add_pipe("entity_linker", config=config)
|
||
>
|
||
> # Construction from class
|
||
> from spacy.pipeline import EntityLinker
|
||
> entity_linker = EntityLinker(nlp.vocab, model)
|
||
> ```
|
||
|
||
Create a new pipeline instance. In your application, you would normally use a
|
||
shortcut for this and instantiate the component using its string name and
|
||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||
|
||
| Name | Type | Description |
|
||
| ---------------- | --------------- | ------------------------------------------------------------------------------------------- |
|
||
| `vocab` | `Vocab` | The shared vocabulary. |
|
||
| `model` | `Model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
|
||
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
|
||
| _keyword-only_ | | |
|
||
| `kb` | `KnowlegeBase` | <!-- TODO: --> |
|
||
| `labels_discard` | `Iterable[str]` | <!-- TODO: --> |
|
||
| `incl_prior` | bool | <!-- TODO: --> |
|
||
| `incl_context` | bool | <!-- TODO: --> |
|
||
|
||
## EntityLinker.\_\_call\_\_ {#call tag="method"}
|
||
|
||
Apply the pipe to one document. The document is modified in place, and returned.
|
||
This usually happens under the hood when the `nlp` object is called on a text
|
||
and all pipeline components are applied to the `Doc` in order. Both
|
||
[`__call__`](/api/entitylinker#call) and [`pipe`](/api/entitylinker#pipe)
|
||
delegate to the [`predict`](/api/entitylinker#predict) and
|
||
[`set_annotations`](/api/entitylinker#set_annotations) methods.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("This is a sentence.")
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> # This usually happens under the hood
|
||
> processed = entity_linker(doc)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | ------------------------ |
|
||
| `doc` | `Doc` | The document to process. |
|
||
| **RETURNS** | `Doc` | The processed document. |
|
||
|
||
## EntityLinker.pipe {#pipe tag="method"}
|
||
|
||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||
when the `nlp` object is called on a text and all pipeline components are
|
||
applied to the `Doc` in order. Both [`__call__`](/api/entitylinker#call) and
|
||
[`pipe`](/api/entitylinker#pipe) delegate to the
|
||
[`predict`](/api/entitylinker#predict) and
|
||
[`set_annotations`](/api/entitylinker#set_annotations) methods.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> for doc in entity_linker.pipe(docs, batch_size=50):
|
||
> pass
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | ------------------------------------------------------ |
|
||
| `stream` | `Iterable[Doc]` | A stream of documents. |
|
||
| _keyword-only_ | | |
|
||
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
||
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
||
|
||
## EntityLinker.begin_training {#begin_training tag="method"}
|
||
|
||
Initialize the pipe for training, using data examples if available. Returns an
|
||
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object. Before calling this
|
||
method, a knowledge base should have been defined with
|
||
[`set_kb`](/api/entitylinker#set_kb).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker", last=True)
|
||
> entity_linker.set_kb(kb)
|
||
> optimizer = entity_linker.begin_training(pipeline=nlp.pipeline)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------- |
|
||
| `get_examples` | `Callable[[], Iterable[Example]]` | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. |
|
||
| _keyword-only_ | | |
|
||
| `pipeline` | `List[Tuple[str, Callable]]` | Optional list of pipeline components that this component is part of. |
|
||
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/dependencyparser#create_optimizer) if not set. |
|
||
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
|
||
## EntityLinker.predict {#predict tag="method"}
|
||
|
||
Apply the pipeline's model to a batch of docs, without modifying them. Returns
|
||
the KB IDs for each entity in each doc, including `NIL` if there is no
|
||
prediction.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> kb_ids = entity_linker.predict([doc1, doc2])
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | --------------- | ------------------------------------------------------------ |
|
||
| `docs` | `Iterable[Doc]` | The documents to predict. |
|
||
| **RETURNS** | `List[str]` | The predicted KB identifiers for the entities in the `docs`. |
|
||
|
||
## EntityLinker.set_annotations {#set_annotations tag="method"}
|
||
|
||
Modify a batch of documents, using pre-computed entity IDs for a list of named
|
||
entities.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> kb_ids = entity_linker.predict([doc1, doc2])
|
||
> entity_linker.set_annotations([doc1, doc2], kb_ids)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------- | --------------- | ------------------------------------------------------------------------------------------------- |
|
||
| `docs` | `Iterable[Doc]` | The documents to modify. |
|
||
| `kb_ids` | `List[str]` | The knowledge base identifiers for the entities in the docs, predicted by `EntityLinker.predict`. |
|
||
|
||
## EntityLinker.update {#update tag="method"}
|
||
|
||
Learn from a batch of [`Example`](/api/example) objects, updating both the
|
||
pipe's entity linking model and context encoder. Delegates to
|
||
[`predict`](/api/entitylinker#predict).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> optimizer = nlp.begin_training()
|
||
> losses = entity_linker.update(examples, sgd=optimizer)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------------- | --------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
|
||
| _keyword-only_ | | |
|
||
| `drop` | float | The dropout rate. |
|
||
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/textcategorizer#set_annotations). |
|
||
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
| `losses` | `Dict[str, float]` | Optional record of the loss during training. Updated using the component name as the key. |
|
||
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
|
||
|
||
## EntityLinker.set_kb {#set_kb tag="method"}
|
||
|
||
Define the knowledge base (KB) used for disambiguating named entities to KB
|
||
identifiers.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> entity_linker.set_kb(kb)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ---- | --------------- | ------------------------------- |
|
||
| `kb` | `KnowledgeBase` | The [`KnowledgeBase`](/api/kb). |
|
||
|
||
## EntityLinker.create_optimizer {#create_optimizer tag="method"}
|
||
|
||
Create an optimizer for the pipeline component.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> optimizer = entity_linker.create_optimizer()
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | --------------------------------------------------- | -------------- |
|
||
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
|
||
## EntityLinker.use_params {#use_params tag="method, contextmanager"}
|
||
|
||
Modify the pipe's model, to use the given parameter values. At the end of the
|
||
context, the original parameters are restored.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> with entity_linker.use_params(optimizer.averages):
|
||
> entity_linker.to_disk("/best_model")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------- | ---- | ----------------------------------------- |
|
||
| `params` | dict | The parameter values to use in the model. |
|
||
|
||
## EntityLinker.to_disk {#to_disk tag="method"}
|
||
|
||
Serialize the pipe to disk.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> entity_linker.to_disk("/path/to/entity_linker")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
|
||
## EntityLinker.from_disk {#from_disk tag="method"}
|
||
|
||
Load the pipe from disk. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> entity_linker = nlp.add_pipe("entity_linker")
|
||
> entity_linker.from_disk("/path/to/entity_linker")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | -------------------------------------------------------------------------- |
|
||
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | `EntityLinker` | The modified `EntityLinker` object. |
|
||
|
||
## Serialization fields {#serialization-fields}
|
||
|
||
During serialization, spaCy will export several data fields used to restore
|
||
different aspects of the object. If needed, you can exclude them from
|
||
serialization by passing in the string names via the `exclude` argument.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> data = entity_linker.to_disk("/path", exclude=["vocab"])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------- | -------------------------------------------------------------- |
|
||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||
| `model` | The binary model data. You usually don't want to exclude this. |
|
||
| `kb` | The knowledge base. You usually don't want to exclude this. |
|