mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
569cc98982
* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
86 lines
2.8 KiB
Python
86 lines
2.8 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf8
|
|
"""Example of multi-processing with Joblib. Here, we're exporting
|
|
part-of-speech-tagged, true-cased, (very roughly) sentence-separated text, with
|
|
each "sentence" on a newline, and spaces between tokens. Data is loaded from
|
|
the IMDB movie reviews dataset and will be loaded automatically via Thinc's
|
|
built-in dataset loader.
|
|
|
|
Compatible with: spaCy v2.0.0+
|
|
Last tested with: v2.1.0
|
|
Prerequisites: pip install joblib
|
|
"""
|
|
from __future__ import print_function, unicode_literals
|
|
|
|
from pathlib import Path
|
|
|
|
import ml_datasets
|
|
from joblib import Parallel, delayed
|
|
from functools import partial
|
|
import plac
|
|
import spacy
|
|
from spacy.util import minibatch
|
|
|
|
|
|
@plac.annotations(
|
|
output_dir=("Output directory", "positional", None, Path),
|
|
model=("Model name (needs tagger)", "positional", None, str),
|
|
n_jobs=("Number of workers", "option", "n", int),
|
|
batch_size=("Batch-size for each process", "option", "b", int),
|
|
limit=("Limit of entries from the dataset", "option", "l", int),
|
|
)
|
|
def main(output_dir, model="en_core_web_sm", n_jobs=4, batch_size=1000, limit=10000):
|
|
nlp = spacy.load(model) # load spaCy model
|
|
print("Loaded model '%s'" % model)
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
# load and pre-process the IMBD dataset
|
|
print("Loading IMDB data...")
|
|
data, _ = ml_datasets.imdb()
|
|
texts, _ = zip(*data[-limit:])
|
|
print("Processing texts...")
|
|
partitions = minibatch(texts, size=batch_size)
|
|
executor = Parallel(n_jobs=n_jobs, backend="multiprocessing", prefer="processes")
|
|
do = delayed(partial(transform_texts, nlp))
|
|
tasks = (do(i, batch, output_dir) for i, batch in enumerate(partitions))
|
|
executor(tasks)
|
|
|
|
|
|
def transform_texts(nlp, batch_id, texts, output_dir):
|
|
print(nlp.pipe_names)
|
|
out_path = Path(output_dir) / ("%d.txt" % batch_id)
|
|
if out_path.exists(): # return None in case same batch is called again
|
|
return None
|
|
print("Processing batch", batch_id)
|
|
with out_path.open("w", encoding="utf8") as f:
|
|
for doc in nlp.pipe(texts):
|
|
f.write(" ".join(represent_word(w) for w in doc if not w.is_space))
|
|
f.write("\n")
|
|
print("Saved {} texts to {}.txt".format(len(texts), batch_id))
|
|
|
|
|
|
def represent_word(word):
|
|
text = word.text
|
|
# True-case, i.e. try to normalize sentence-initial capitals.
|
|
# Only do this if the lower-cased form is more probable.
|
|
if (
|
|
text.istitle()
|
|
and is_sent_begin(word)
|
|
and word.prob < word.doc.vocab[text.lower()].prob
|
|
):
|
|
text = text.lower()
|
|
return text + "|" + word.tag_
|
|
|
|
|
|
def is_sent_begin(word):
|
|
if word.i == 0:
|
|
return True
|
|
elif word.i >= 2 and word.nbor(-1).text in (".", "!", "?", "..."):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
if __name__ == "__main__":
|
|
plac.call(main)
|