mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* initial * initial documentation run * fix typo * Remove mentions of Torchscript and quantization Both are disabled in the initial release of `spacy-curated-transformers`. * Fix `piece_encoder` entries * Remove `spacy-transformers`-specific warning * Fix duplicate entries in tables * Doc fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Remove type aliases * Fix copy-paste typo * Change `debug pieces` version tag to `3.7` * Set curated transformers API version to `3.7` * Fix transformer listener naming * Add docs for `init fill-config-transformer` * Update CLI command invocation syntax * Update intro section of the pipeline component docs * Fix source URL * Add a note to the architectures section about the `init fill-config-transformer` CLI command * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update CLI command name, args * Remove hyphen from the `curated-transformers.mdx` filename * Fix links * Remove placeholder text * Add text to the model/tokenizer loader sections * Fill in the `DocTransformerOutput` section * Formatting fixes * Add curated transformer page to API docs sidebar * More formatting fixes * Remove TODO comment * Remove outdated info about default config * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add link to HF model hub * `prettier` --------- Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			573 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			573 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| ---
 | |
| title: CuratedTransformer
 | |
| teaser:
 | |
|   Pipeline component for multi-task learning with Curated Transformer models
 | |
| tag: class
 | |
| source: github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
 | |
| version: 3.7
 | |
| api_base_class: /api/pipe
 | |
| api_string_name: curated_transformer
 | |
| ---
 | |
| 
 | |
| <Infobox title="Important note" variant="warning">
 | |
| 
 | |
| This component is available via the extension package
 | |
| [`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers).
 | |
| It exposes the component via entry points, so if you have the package installed,
 | |
| using `factory = "curated_transformer"` in your
 | |
| [training config](/usage/training#config) will work out-of-the-box.
 | |
| 
 | |
| </Infobox>
 | |
| 
 | |
| This pipeline component lets you use a curated set of transformer models in your
 | |
| pipeline. spaCy Curated Transformers currently supports the following model
 | |
| types:
 | |
| 
 | |
| - ALBERT
 | |
| - BERT
 | |
| - CamemBERT
 | |
| - RoBERTa
 | |
| - XLM-RoBERT
 | |
| 
 | |
| If you want to use another type of model, use
 | |
| [spacy-transformers](/api/spacy-transformers), which allows you to use all
 | |
| Hugging Face transformer models with spaCy.
 | |
| 
 | |
| You will usually connect downstream components to a shared Curated Transformer
 | |
| pipe using one of the Curated Transformer listener layers. This works similarly
 | |
| to spaCy's [Tok2Vec](/api/tok2vec), and the
 | |
| [Tok2VecListener](/api/architectures/#Tok2VecListener) sublayer. The component
 | |
| assigns the output of the transformer to the `Doc`'s extension attributes. To
 | |
| access the values, you can use the custom
 | |
| [`Doc._.trf_data`](#assigned-attributes) attribute.
 | |
| 
 | |
| For more details, see the [usage documentation](/usage/embeddings-transformers).
 | |
| 
 | |
| ## Assigned Attributes {id="assigned-attributes"}
 | |
| 
 | |
| The component sets the following
 | |
| [custom extension attribute](/usage/processing-pipeline#custom-components-attributes):
 | |
| 
 | |
| | Location         | Value                                                                      |
 | |
| | ---------------- | -------------------------------------------------------------------------- |
 | |
| | `Doc._.trf_data` | Curated Transformer outputs for the `Doc` object. ~~DocTransformerOutput~~ |
 | |
| 
 | |
| ## Config and Implementation {id="config"}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures#curated-trf) documentation for details
 | |
| on the curated transformer architectures and their arguments and
 | |
| hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy_curated_transformers.pipeline.transformer import DEFAULT_CONFIG
 | |
| >
 | |
| > nlp.add_pipe("curated_transformer", config=DEFAULT_CONFIG)
 | |
| > ```
 | |
| 
 | |
| | Setting             | Description                                                                                                                                                                                                                                        |
 | |
| | ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `model`             | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Defaults to [`XlmrTransformer`](/api/architectures#curated-trf). ~~Model~~                                                                                          |
 | |
| | `frozen`            | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~                                                                                                                                                            |
 | |
| | `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
 | |
| 
 | |
| ```python
 | |
| https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
 | |
| ```
 | |
| 
 | |
| ## CuratedTransformer.\_\_init\_\_ {id="init",tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| >
 | |
| > # Construction via add_pipe with custom config
 | |
| > config = {
 | |
| >     "model": {
 | |
| >         "@architectures": "spacy-curated-transformers.XlmrTransformer.v1",
 | |
| >         "vocab_size": 250002,
 | |
| >         "num_hidden_layers": 12,
 | |
| >         "hidden_width": 768,
 | |
| >         "piece_encoder": {
 | |
| >             "@architectures": "spacy-curated-transformers.XlmrSentencepieceEncoder.v1"
 | |
| >         }
 | |
| >     }
 | |
| > }
 | |
| > trf = nlp.add_pipe("curated_transformer", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy_curated_transformers import CuratedTransformer
 | |
| > trf = CuratedTransformer(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| Construct a `CuratedTransformer` component. One or more subsequent spaCy
 | |
| components can use the transformer outputs as features in its model, with
 | |
| gradients backpropagated to the single shared weights. The activations from the
 | |
| transformer are saved in the [`Doc._.trf_data`](#assigned-attributes) extension
 | |
| attribute. You can also provide a callback to set additional annotations. In
 | |
| your application, you would normally use a shortcut for this and instantiate the
 | |
| component using its string name and [`nlp.add_pipe`](/api/language#create_pipe).
 | |
| 
 | |
| | Name                | Description                                                                                                                                                                                                                                        |
 | |
| | ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `vocab`             | The shared vocabulary. ~~Vocab~~                                                                                                                                                                                                                   |
 | |
| | `model`             | One of the supported pre-trained transformer models. ~~Model~~                                                                                                                                                                                     |
 | |
| | _keyword-only_      |                                                                                                                                                                                                                                                    |
 | |
| | `name`              | The component instance name. ~~str~~                                                                                                                                                                                                               |
 | |
| | `frozen`            | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~                                                                                                                                                            |
 | |
| | `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
 | |
| 
 | |
| ## CuratedTransformer.\_\_call\_\_ {id="call",tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/curatedtransformer#call) and
 | |
| [`pipe`](/api/curatedtransformer#pipe) delegate to the
 | |
| [`predict`](/api/curatedtransformer#predict) and
 | |
| [`set_annotations`](/api/curatedtransformer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > # This usually happens under the hood
 | |
| > processed = trf(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## CuratedTransformer.pipe {id="pipe",tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/curatedtransformer#call)
 | |
| and [`pipe`](/api/curatedtransformer#pipe) delegate to the
 | |
| [`predict`](/api/curatedtransformer#predict) and
 | |
| [`set_annotations`](/api/curatedtransformer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > for doc in trf.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## CuratedTransformer.initialize {id="initialize",tag="method"}
 | |
| 
 | |
| Initialize the component for training and return an
 | |
| [`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
 | |
| function that returns an iterable of [`Example`](/api/example) objects. **At
 | |
| least one example should be supplied.** The data examples are used to
 | |
| **initialize the model** of the component and can either be the full training
 | |
| data or a representative sample. Initialization includes validating the network,
 | |
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | |
| setting up the label scheme based on the data. This method is typically called
 | |
| by [`Language.initialize`](/api/language#initialize).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > trf.initialize(lambda: examples, nlp=nlp)
 | |
| > ```
 | |
| 
 | |
| | Name             | Description                                                                                                                                                                |
 | |
| | ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples`   | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
 | |
| | _keyword-only_   |                                                                                                                                                                            |
 | |
| | `nlp`            | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                       |
 | |
| | `encoder_loader` | Initialization callback for the transformer model. ~~Optional[Callable]~~                                                                                                  |
 | |
| | `piece_loader`   | Initialization callback for the input piece encoder. ~~Optional[Callable]~~                                                                                                |
 | |
| 
 | |
| ## CuratedTransformer.predict {id="predict",tag="method"}
 | |
| 
 | |
| Apply the component's model to a batch of [`Doc`](/api/doc) objects without
 | |
| modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > scores = trf.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                 |
 | |
| | ----------- | ------------------------------------------- |
 | |
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | |
| | **RETURNS** | The model's prediction for each document.   |
 | |
| 
 | |
| ## CuratedTransformer.set_annotations {id="set_annotations",tag="method"}
 | |
| 
 | |
| Assign the extracted features to the `Doc` objects. By default, the
 | |
| [`DocTransformerOutput`](/api/curatedtransformer#doctransformeroutput) object is
 | |
| written to the [`Doc._.trf_data`](#assigned-attributes) attribute. Your
 | |
| `set_extra_annotations` callback is then called, if provided.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > scores = trf.predict(docs)
 | |
| > trf.set_annotations(docs, scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                                  |
 | |
| | -------- | ------------------------------------------------------------ |
 | |
| | `docs`   | The documents to modify. ~~Iterable[Doc]~~                   |
 | |
| | `scores` | The scores to set, produced by `CuratedTransformer.predict`. |
 | |
| 
 | |
| ## CuratedTransformer.update {id="update",tag="method"}
 | |
| 
 | |
| Prepare for an update to the transformer.
 | |
| 
 | |
| Like the [`Tok2Vec`](api/tok2vec) component, the `CuratedTransformer` component
 | |
| is unusual in that it does not receive "gold standard" annotations to calculate
 | |
| a weight update. The optimal output of the transformer data is unknown; it's a
 | |
| hidden layer inside the network that is updated by backpropagating from output
 | |
| layers.
 | |
| 
 | |
| The `CuratedTransformer` component therefore does not perform a weight update
 | |
| during its own `update` method. Instead, it runs its transformer model and
 | |
| communicates the output and the backpropagation callback to any downstream
 | |
| components that have been connected to it via the transformer listener sublayer.
 | |
| If there are multiple listeners, the last layer will actually backprop to the
 | |
| transformer and call the optimizer, while the others simply increment the
 | |
| gradients.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > optimizer = nlp.initialize()
 | |
| > losses = trf.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                      |
 | |
| | -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ |
 | |
| | _keyword-only_ |                                                                                                                                                                                  |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                                                                                      |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~                                                                    |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~                                                         |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                                                                            |
 | |
| 
 | |
| ## CuratedTransformer.create_optimizer {id="create_optimizer",tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > optimizer = trf.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                  |
 | |
| | ----------- | ---------------------------- |
 | |
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | |
| 
 | |
| ## CuratedTransformer.use_params {id="use_params",tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model to use the given parameter values. At the end of the
 | |
| context, the original parameters are restored.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > with trf.use_params(optimizer.averages):
 | |
| >     trf.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                        |
 | |
| | -------- | -------------------------------------------------- |
 | |
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | |
| 
 | |
| ## CuratedTransformer.to_disk {id="to_disk",tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > trf.to_disk("/path/to/transformer")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## CuratedTransformer.from_disk {id="from_disk",tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > trf.from_disk("/path/to/transformer")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `CuratedTransformer` object. ~~CuratedTransformer~~                                |
 | |
| 
 | |
| ## CuratedTransformer.to_bytes {id="to_bytes",tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > trf_bytes = trf.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `CuratedTransformer` object. ~~bytes~~                           |
 | |
| 
 | |
| ## CuratedTransformer.from_bytes {id="from_bytes",tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > trf_bytes = trf.to_bytes()
 | |
| > trf = nlp.add_pipe("curated_transformer")
 | |
| > trf.from_bytes(trf_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `CuratedTransformer` object. ~~CuratedTransformer~~                                     |
 | |
| 
 | |
| ## Serialization Fields {id="serialization-fields"}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = trf.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 | |
| 
 | |
| ## DocTransformerOutput {id="doctransformeroutput",tag="dataclass"}
 | |
| 
 | |
| Curated Transformer outputs for one `Doc` object. Stores the dense
 | |
| representations generated by the transformer for each piece identifier. Piece
 | |
| identifiers are grouped by token. Instances of this class are typically assigned
 | |
| to the [`Doc._.trf_data`](/api/curatedtransformer#assigned-attributes) extension
 | |
| attribute.
 | |
| 
 | |
| | Name              | Description                                                                                                                                                                        |
 | |
| | ----------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `all_outputs`     | List of `Ragged` tensors that correspends to outputs of the different transformer layers. Each tensor element corresponds to a piece identifier's representation. ~~List[Ragged]~~ |
 | |
| | `last_layer_only` | If only the last transformer layer's outputs are preserved. ~~bool~~                                                                                                               |
 | |
| 
 | |
| ### DocTransformerOutput.embedding_layer {id="doctransformeroutput-embeddinglayer",tag="property"}
 | |
| 
 | |
| Return the output of the transformer's embedding layer or `None` if
 | |
| `last_layer_only` is `True`.
 | |
| 
 | |
| | Name        | Description                                  |
 | |
| | ----------- | -------------------------------------------- |
 | |
| | **RETURNS** | Embedding layer output. ~~Optional[Ragged]~~ |
 | |
| 
 | |
| ### DocTransformerOutput.last_hidden_layer_state {id="doctransformeroutput-lasthiddenlayerstate",tag="property"}
 | |
| 
 | |
| Return the output of the transformer's last hidden layer.
 | |
| 
 | |
| | Name        | Description                          |
 | |
| | ----------- | ------------------------------------ |
 | |
| | **RETURNS** | Last hidden layer output. ~~Ragged~~ |
 | |
| 
 | |
| ### DocTransformerOutput.all_hidden_layer_states {id="doctransformeroutput-allhiddenlayerstates",tag="property"}
 | |
| 
 | |
| Return the outputs of all transformer layers (excluding the embedding layer).
 | |
| 
 | |
| | Name        | Description                            |
 | |
| | ----------- | -------------------------------------- |
 | |
| | **RETURNS** | Hidden layer outputs. ~~List[Ragged]~~ |
 | |
| 
 | |
| ### DocTransformerOutput.num_outputs {id="doctransformeroutput-numoutputs",tag="property"}
 | |
| 
 | |
| Return the number of layer outputs stored in the `DocTransformerOutput` instance
 | |
| (including the embedding layer).
 | |
| 
 | |
| | Name        | Description                |
 | |
| | ----------- | -------------------------- |
 | |
| | **RETURNS** | Numbef of outputs. ~~int~~ |
 | |
| 
 | |
| ## Span Getters {id="span_getters",source="github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/span_getters.py"}
 | |
| 
 | |
| Span getters are functions that take a batch of [`Doc`](/api/doc) objects and
 | |
| return a lists of [`Span`](/api/span) objects for each doc to be processed by
 | |
| the transformer. This is used to manage long documents by cutting them into
 | |
| smaller sequences before running the transformer. The spans are allowed to
 | |
| overlap, and you can also omit sections of the `Doc` if they are not relevant.
 | |
| Span getters can be referenced in the
 | |
| `[components.transformer.model.with_spans]` block of the config to customize the
 | |
| sequences processed by the transformer.
 | |
| 
 | |
| | Name        | Description                                                   |
 | |
| | ----------- | ------------------------------------------------------------- |
 | |
| | `docs`      | A batch of `Doc` objects. ~~Iterable[Doc]~~                   |
 | |
| | **RETURNS** | The spans to process by the transformer. ~~List[List[Span]]~~ |
 | |
| 
 | |
| ### WithStridedSpans.v1 {id="strided_spans",tag="registered function"}
 | |
| 
 | |
| > #### Example config
 | |
| >
 | |
| > ```ini
 | |
| > [transformer.model.with_spans]
 | |
| > @architectures = "spacy-curated-transformers.WithStridedSpans.v1"
 | |
| > stride = 96
 | |
| > window = 128
 | |
| > ```
 | |
| 
 | |
| Create a span getter for strided spans. If you set the `window` and `stride` to
 | |
| the same value, the spans will cover each token once. Setting `stride` lower
 | |
| than `window` will allow for an overlap, so that some tokens are counted twice.
 | |
| This can be desirable, because it allows all tokens to have both a left and
 | |
| right context.
 | |
| 
 | |
| | Name     | Description              |
 | |
| | -------- | ------------------------ |
 | |
| | `window` | The window size. ~~int~~ |
 | |
| | `stride` | The stride size. ~~int~~ |
 | |
| 
 | |
| ## Model Loaders
 | |
| 
 | |
| [Curated Transformer models](/api/architectures#curated-trf) are constructed
 | |
| with default hyperparameters and randomized weights when the pipeline is
 | |
| created. To load the weights of an existing pre-trained model into the pipeline,
 | |
| one of the following loader callbacks can be used. The pre-trained model must
 | |
| have the same hyperparameters as the model used by the pipeline.
 | |
| 
 | |
| ### HFTransformerEncoderLoader.v1 {id="hf_trfencoder_loader",tag="registered_function"}
 | |
| 
 | |
| Construct a callback that initializes a supported transformer model with weights
 | |
| from a corresponding HuggingFace model.
 | |
| 
 | |
| | Name       | Description                                |
 | |
| | ---------- | ------------------------------------------ |
 | |
| | `name`     | Name of the HuggingFace model. ~~str~~     |
 | |
| | `revision` | Name of the model revision/branch. ~~str~~ |
 | |
| 
 | |
| ### PyTorchCheckpointLoader.v1 {id="pytorch_checkpoint_loader",tag="registered_function"}
 | |
| 
 | |
| Construct a callback that initializes a supported transformer model with weights
 | |
| from a PyTorch checkpoint.
 | |
| 
 | |
| | Name   | Description                              |
 | |
| | ------ | ---------------------------------------- |
 | |
| | `path` | Path to the PyTorch checkpoint. ~~Path~~ |
 | |
| 
 | |
| ## Tokenizer Loaders
 | |
| 
 | |
| [Curated Transformer models](/api/architectures#curated-trf) must be paired with
 | |
| a matching tokenizer (piece encoder) model in a spaCy pipeline. As with the
 | |
| transformer models, tokenizers are constructed with an empty vocabulary during
 | |
| pipeline creation - They need to be initialized with an appropriate loader
 | |
| before use in training/inference.
 | |
| 
 | |
| ### ByteBPELoader.v1 {id="bytebpe_loader",tag="registered_function"}
 | |
| 
 | |
| Construct a callback that initializes a Byte-BPE piece encoder model.
 | |
| 
 | |
| | Name          | Description                           |
 | |
| | ------------- | ------------------------------------- |
 | |
| | `vocab_path`  | Path to the vocabulary file. ~~Path~~ |
 | |
| | `merges_path` | Path to the merges file. ~~Path~~     |
 | |
| 
 | |
| ### CharEncoderLoader.v1 {id="charencoder_loader",tag="registered_function"}
 | |
| 
 | |
| Construct a callback that initializes a character piece encoder model.
 | |
| 
 | |
| | Name        | Description                                                                 |
 | |
| | ----------- | --------------------------------------------------------------------------- |
 | |
| | `path`      | Path to the serialized character model. ~~Path~~                            |
 | |
| | `bos_piece` | Piece used as a beginning-of-sentence token. Defaults to `"[BOS]"`. ~~str~~ |
 | |
| | `eos_piece` | Piece used as a end-of-sentence token. Defaults to `"[EOS]"`. ~~str~~       |
 | |
| | `unk_piece` | Piece used as a stand-in for unknown tokens. Defaults to `"[UNK]"`. ~~str~~ |
 | |
| | `normalize` | Unicode normalization form to use. Defaults to `"NFKC"`. ~~str~~            |
 | |
| 
 | |
| ### HFPieceEncoderLoader.v1 {id="hf_pieceencoder_loader",tag="registered_function"}
 | |
| 
 | |
| Construct a callback that initializes a HuggingFace piece encoder model. Used in
 | |
| conjunction with the HuggingFace model loader.
 | |
| 
 | |
| | Name       | Description                                |
 | |
| | ---------- | ------------------------------------------ |
 | |
| | `name`     | Name of the HuggingFace model. ~~str~~     |
 | |
| | `revision` | Name of the model revision/branch. ~~str~~ |
 | |
| 
 | |
| ### SentencepieceLoader.v1 {id="sentencepiece_loader",tag="registered_function"}
 | |
| 
 | |
| Construct a callback that initializes a SentencePiece piece encoder model.
 | |
| 
 | |
| | Name   | Description                                          |
 | |
| | ------ | ---------------------------------------------------- |
 | |
| | `path` | Path to the serialized SentencePiece model. ~~Path~~ |
 | |
| 
 | |
| ### WordpieceLoader.v1 {id="wordpiece_loader",tag="registered_function"}
 | |
| 
 | |
| Construct a callback that initializes a WordPiece piece encoder model.
 | |
| 
 | |
| | Name   | Description                                      |
 | |
| | ------ | ------------------------------------------------ |
 | |
| | `path` | Path to the serialized WordPiece model. ~~Path~~ |
 | |
| 
 | |
| ## Callbacks
 | |
| 
 | |
| ### gradual_transformer_unfreezing.v1 {id="gradual_transformer_unfreezing",tag="registered_function"}
 | |
| 
 | |
| Construct a callback that can be used to gradually unfreeze the weights of one
 | |
| or more Transformer components during training. This can be used to prevent
 | |
| catastrophic forgetting during fine-tuning.
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                  |
 | |
| | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `target_pipes` | A dictionary whose keys and values correspond to the names of Transformer components and the training step at which they should be unfrozen respectively. ~~Dict[str, int]~~ |
 |