mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			367 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			367 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: SentenceRecognizer
 | |
| tag: class
 | |
| source: spacy/pipeline/senter.pyx
 | |
| new: 3
 | |
| teaser: 'Pipeline component for sentence segmentation'
 | |
| api_base_class: /api/tagger
 | |
| api_string_name: senter
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| A trainable pipeline component for sentence segmentation. For a simpler,
 | |
| ruse-based strategy, see the [`Sentencizer`](/api/sentencizer).
 | |
| 
 | |
| ## Config and implementation {#config}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.senter import DEFAULT_SENTER_MODEL
 | |
| > config = {"model": DEFAULT_SENTER_MODEL,}
 | |
| > nlp.add_pipe("senter", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting | Type                                       | Description       | Default                             |
 | |
| | ------- | ------------------------------------------ | ----------------- | ----------------------------------- |
 | |
| | `model` | [`Model`](https://thinc.ai/docs/api-model) | The model to use. | [Tagger](/api/architectures#Tagger) |
 | |
| 
 | |
| ```python
 | |
| https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/senter.pyx
 | |
| ```
 | |
| 
 | |
| ## SentenceRecognizer.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| Initialize the sentence recognizer.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > senter = nlp.add_pipe("senter")
 | |
| >
 | |
| > # Construction via create_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_senter"}}
 | |
| > senter = nlp.add_pipe("senter", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import SentenceRecognizer
 | |
| > senter = SentenceRecognizer(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#add_pipe).
 | |
| 
 | |
| | Name    | Type    | Description                                                                                 |
 | |
| | ------- | ------- | ------------------------------------------------------------------------------------------- |
 | |
| | `vocab` | `Vocab` | The shared vocabulary.                                                                      |
 | |
| | `model` | `Model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component.             |
 | |
| | `name`  | str     | String name of the component instance. Used to add entries to the `losses` during training. |
 | |
| 
 | |
| ## SentenceRecognizer.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/sentencerecognizer#call) and
 | |
| [`pipe`](/api/sentencerecognizer#pipe) delegate to the
 | |
| [`predict`](/api/sentencerecognizer#predict) and
 | |
| [`set_annotations`](/api/sentencerecognizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > # This usually happens under the hood
 | |
| > processed = senter(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Type  | Description              |
 | |
| | ----------- | ----- | ------------------------ |
 | |
| | `doc`       | `Doc` | The document to process. |
 | |
| | **RETURNS** | `Doc` | The processed document.  |
 | |
| 
 | |
| ## SentenceRecognizer.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/sentencerecognizer#call)
 | |
| and [`pipe`](/api/sentencerecognizer#pipe) delegate to the
 | |
| [`predict`](/api/sentencerecognizer#predict) and
 | |
| [`set_annotations`](/api/sentencerecognizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > for doc in senter.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Type            | Description                                            |
 | |
| | -------------- | --------------- | ------------------------------------------------------ |
 | |
| | `stream`       | `Iterable[Doc]` | A stream of documents.                                 |
 | |
| | _keyword-only_ |                 |                                                        |
 | |
| | `batch_size`   | int             | The number of texts to buffer. Defaults to `128`.      |
 | |
| | **YIELDS**     | `Doc`           | Processed documents in the order of the original text. |
 | |
| 
 | |
| ## SentenceRecognizer.begin_training {#begin_training tag="method"}
 | |
| 
 | |
| Initialize the pipe for training, using data examples if available. Returns an
 | |
| [`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > optimizer = senter.begin_training(pipeline=nlp.pipeline)
 | |
| > ```
 | |
| 
 | |
| | Name           | Type                                                | Description                                                                                                           |
 | |
| | -------------- | --------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | `Callable[[], Iterable[Example]]`                   | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects.            |
 | |
| | _keyword-only_ |                                                     |                                                                                                                       |
 | |
| | `pipeline`     | `List[Tuple[str, Callable]]`                        | Optional list of pipeline components that this component is part of.                                                  |
 | |
| | `sgd`          | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/sentencerecognizer#create_optimizer) if not set. |
 | |
| | **RETURNS**    | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer.                                                                                                        |
 | |
| 
 | |
| ## SentenceRecognizer.predict {#predict tag="method"}
 | |
| 
 | |
| Apply the pipeline's model to a batch of docs, without modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > scores = senter.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Type            | Description                               |
 | |
| | ----------- | --------------- | ----------------------------------------- |
 | |
| | `docs`      | `Iterable[Doc]` | The documents to predict.                 |
 | |
| | **RETURNS** | -               | The model's prediction for each document. |
 | |
| 
 | |
| ## SentenceRecognizer.set_annotations {#set_annotations tag="method"}
 | |
| 
 | |
| Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > scores = senter.predict([doc1, doc2])
 | |
| > senter.set_annotations([doc1, doc2], scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Type            | Description                                                  |
 | |
| | -------- | --------------- | ------------------------------------------------------------ |
 | |
| | `docs`   | `Iterable[Doc]` | The documents to modify.                                     |
 | |
| | `scores` | -               | The scores to set, produced by `SentenceRecognizer.predict`. |
 | |
| 
 | |
| ## SentenceRecognizer.update {#update tag="method"}
 | |
| 
 | |
| Learn from a batch of documents and gold-standard information, updating the
 | |
| pipe's model. Delegates to [`predict`](/api/sentencerecognizer#predict) and
 | |
| [`get_loss`](/api/sentencerecognizer#get_loss).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > optimizer = nlp.begin_training()
 | |
| > losses = senter.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name              | Type                                                | Description                                                                                                                                      |
 | |
| | ----------------- | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`        | `Iterable[Example]`                                 | A batch of [`Example`](/api/example) objects to learn from.                                                                                      |
 | |
| | _keyword-only_    |                                                     |                                                                                                                                                  |
 | |
| | `drop`            | float                                               | The dropout rate.                                                                                                                                |
 | |
| | `set_annotations` | bool                                                | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/sentencerecognizer#set_annotations). |
 | |
| | `sgd`             | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer.                                                                                                                                   |
 | |
| | `losses`          | `Dict[str, float]`                                  | Optional record of the loss during training. The value keyed by the model's name is updated.                                                     |
 | |
| | **RETURNS**       | `Dict[str, float]`                                  | The updated `losses` dictionary.                                                                                                                 |
 | |
| 
 | |
| ## SentenceRecognizer.rehearse {#rehearse tag="method,experimental"}
 | |
| 
 | |
| Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
 | |
| current model to make predictions similar to an initial model, to try to address
 | |
| the "catastrophic forgetting" problem. This feature is experimental.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > optimizer = nlp.resume_training()
 | |
| > losses = senter.rehearse(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Type                                                | Description                                                                               |
 | |
| | -------------- | --------------------------------------------------- | ----------------------------------------------------------------------------------------- |
 | |
| | `examples`     | `Iterable[Example]`                                 | A batch of [`Example`](/api/example) objects to learn from.                               |
 | |
| | _keyword-only_ |                                                     |                                                                                           |
 | |
| | `drop`         | float                                               | The dropout rate.                                                                         |
 | |
| | `sgd`          | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer.                                                                            |
 | |
| | `losses`       | `Dict[str, float]`                                  | Optional record of the loss during training. Updated using the component name as the key. |
 | |
| | **RETURNS**    | `Dict[str, float]`                                  | The updated `losses` dictionary.                                                          |
 | |
| 
 | |
| ## SentenceRecognizer.get_loss {#get_loss tag="method"}
 | |
| 
 | |
| Find the loss and gradient of loss for the batch of documents and their
 | |
| predicted scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > scores = senter.predict([eg.predicted for eg in examples])
 | |
| > loss, d_loss = senter.get_loss(examples, scores)
 | |
| > ```
 | |
| 
 | |
| | Name        | Type                  | Description                                         |
 | |
| | ----------- | --------------------- | --------------------------------------------------- |
 | |
| | `examples`  | `Iterable[Example]`   | The batch of examples.                              |
 | |
| | `scores`    | -                     | Scores representing the model's predictions.        |
 | |
| | **RETURNS** | `Tuple[float, float]` | The loss and the gradient, i.e. `(loss, gradient)`. |
 | |
| 
 | |
| ## SentenceRecognizer.score {#score tag="method" new="3"}
 | |
| 
 | |
| Score a batch of examples.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > scores = senter.score(examples)
 | |
| > ```
 | |
| 
 | |
| | Name        | Type                | Description                                                              |
 | |
| | ----------- | ------------------- | ------------------------------------------------------------------------ |
 | |
| | `examples`  | `Iterable[Example]` | The examples to score.                                                   |
 | |
| | **RETURNS** | `Dict[str, Any]`    | The scores, produced by [`Scorer.score_spans`](/api/scorer#score_spans). |
 | |
| 
 | |
| ## SentenceRecognizer.create_optimizer {#create_optimizer tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > optimizer = senter.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Type                                                | Description    |
 | |
| | ----------- | --------------------------------------------------- | -------------- |
 | |
| | **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
 | |
| 
 | |
| ## SentenceRecognizer.use_params {#use_params tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model, to use the given parameter values. At the end of the
 | |
| context, the original parameters are restored.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > with senter.use_params(optimizer.averages):
 | |
| >     senter.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Type | Description                               |
 | |
| | -------- | ---- | ----------------------------------------- |
 | |
| | `params` | dict | The parameter values to use in the model. |
 | |
| 
 | |
| ## SentenceRecognizer.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > senter.to_disk("/path/to/senter")
 | |
| > ```
 | |
| 
 | |
| | Name      | Type            | Description                                                                                                           |
 | |
| | --------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
 | |
| | `path`    | str / `Path`    | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | |
| | `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | |
| 
 | |
| ## SentenceRecognizer.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > senter.from_disk("/path/to/senter")
 | |
| > ```
 | |
| 
 | |
| | Name        | Type                 | Description                                                                |
 | |
| | ----------- | -------------------- | -------------------------------------------------------------------------- |
 | |
| | `path`      | str / `Path`         | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | |
| | `exclude`   | `Iterable[str]`      | String names of [serialization fields](#serialization-fields) to exclude.  |
 | |
| | **RETURNS** | `SentenceRecognizer` | The modified `SentenceRecognizer` object.                                  |
 | |
| 
 | |
| ## SentenceRecognizer.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > senter_bytes = senter.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name        | Type            | Description                                                               |
 | |
| | ----------- | --------------- | ------------------------------------------------------------------------- |
 | |
| | `exclude`   | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
 | |
| | **RETURNS** | bytes           | The serialized form of the `SentenceRecognizer` object.                   |
 | |
| 
 | |
| ## SentenceRecognizer.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter_bytes = senter.to_bytes()
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > senter.from_bytes(senter_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name         | Type                 | Description                                                               |
 | |
| | ------------ | -------------------- | ------------------------------------------------------------------------- |
 | |
| | `bytes_data` | bytes                | The data to load from.                                                    |
 | |
| | `exclude`    | `Iterable[str]`      | String names of [serialization fields](#serialization-fields) to exclude. |
 | |
| | **RETURNS**  | `SentenceRecognizer` | The `SentenceRecognizer` object.                                          |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = senter.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 |