mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			131 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: GoldParse
 | ||
| teaser: A collection for training annotations
 | ||
| tag: class
 | ||
| source: spacy/gold.pyx
 | ||
| ---
 | ||
| 
 | ||
| ## GoldParse.\_\_init\_\_ {#init tag="method"}
 | ||
| 
 | ||
| Create a `GoldParse`. Unlike annotations in `entities`, label annotations in
 | ||
| `cats` can overlap, i.e. a single word can be covered by multiple labelled
 | ||
| spans. The [`TextCategorizer`](/api/textcategorizer) component expects true
 | ||
| examples of a label to have the value `1.0`, and negative examples of a label to
 | ||
| have the value `0.0`. Labels not in the dictionary are treated as missing – the
 | ||
| gradient for those labels will be zero.
 | ||
| 
 | ||
| | Name        | Type        | Description                                                                                                                                                                                                                            |
 | ||
| | ----------- | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `doc`       | `Doc`       | The document the annotations refer to.                                                                                                                                                                                                 |
 | ||
| | `words`     | iterable    | A sequence of unicode word strings.                                                                                                                                                                                                    |
 | ||
| | `tags`      | iterable    | A sequence of strings, representing tag annotations.                                                                                                                                                                                   |
 | ||
| | `heads`     | iterable    | A sequence of integers, representing syntactic head offsets.                                                                                                                                                                           |
 | ||
| | `deps`      | iterable    | A sequence of strings, representing the syntactic relation types.                                                                                                                                                                      |
 | ||
| | `entities`  | iterable    | A sequence of named entity annotations, either as BILUO tag strings, or as `(start_char, end_char, label)` tuples, representing the entity positions. If BILUO tag strings, you can specify missing values by setting the tag to None. |
 | ||
| | `cats`      | dict        | Labels for text classification. Each key in the dictionary may be a string or an int, or a `(start_char, end_char, label)` tuple, indicating that the label is applied to only part of the document (usually a sentence).              |
 | ||
| | **RETURNS** | `GoldParse` | The newly constructed object.                                                                                                                                                                                                          |
 | ||
| 
 | ||
| ## GoldParse.\_\_len\_\_ {#len tag="method"}
 | ||
| 
 | ||
| Get the number of gold-standard tokens.
 | ||
| 
 | ||
| | Name        | Type | Description                         |
 | ||
| | ----------- | ---- | ----------------------------------- |
 | ||
| | **RETURNS** | int  | The number of gold-standard tokens. |
 | ||
| 
 | ||
| ## GoldParse.is_projective {#is_projective tag="property"}
 | ||
| 
 | ||
| Whether the provided syntactic annotations form a projective dependency tree.
 | ||
| 
 | ||
| | Name        | Type | Description                               |
 | ||
| | ----------- | ---- | ----------------------------------------- |
 | ||
| | **RETURNS** | bool | Whether annotations form projective tree. |
 | ||
| 
 | ||
| ## Attributes {#attributes}
 | ||
| 
 | ||
| | Name                              | Type | Description                                                                                                                                              |
 | ||
| | --------------------------------- | ---- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `tags`                            | list | The part-of-speech tag annotations.                                                                                                                      |
 | ||
| | `heads`                           | list | The syntactic head annotations.                                                                                                                          |
 | ||
| | `labels`                          | list | The syntactic relation-type annotations.                                                                                                                 |
 | ||
| | `ents`                            | list | The named entity annotations.                                                                                                                            |
 | ||
| | `cand_to_gold`                    | list | The alignment from candidate tokenization to gold tokenization.                                                                                          |
 | ||
| | `gold_to_cand`                    | list | The alignment from gold tokenization to candidate tokenization.                                                                                          |
 | ||
| | `cats` <Tag variant="new">2</Tag> | list | Entries in the list should be either a label, or a `(start, end, label)` triple. The tuple form is used for categories applied to spans of the document. |
 | ||
| 
 | ||
| ## Utilities {#util}
 | ||
| 
 | ||
| ### gold.biluo_tags_from_offsets {#biluo_tags_from_offsets tag="function"}
 | ||
| 
 | ||
| Encode labelled spans into per-token tags, using the
 | ||
| [BILUO scheme](/api/annotation#biluo) (Begin, In, Last, Unit, Out). Returns a
 | ||
| list of unicode strings, describing the tags. Each tag string will be of the
 | ||
| form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of
 | ||
| `"B"`, `"I"`, `"L"`, `"U"`. The string `"-"` is used where the entity offsets
 | ||
| don't align with the tokenization in the `Doc` object. The training algorithm
 | ||
| will view these as missing values. `O` denotes a non-entity token. `B` denotes
 | ||
| the beginning of a multi-token entity, `I` the inside of an entity of three or
 | ||
| more tokens, and `L` the end of an entity of two or more tokens. `U` denotes a
 | ||
| single-token entity.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.gold import biluo_tags_from_offsets
 | ||
| >
 | ||
| > doc = nlp(u"I like London.")
 | ||
| > entities = [(7, 13, "LOC")]
 | ||
| > tags = biluo_tags_from_offsets(doc, entities)
 | ||
| > assert tags == ["O", "O", "U-LOC", "O"]
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type     | Description                                                                                                                                     |
 | ||
| | ----------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `doc`       | `Doc`    | The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document.                          |
 | ||
| | `entities`  | iterable | A sequence of `(start, end, label)` triples. `start` and `end` should be character-offset integers denoting the slice into the original string. |
 | ||
| | **RETURNS** | list     | Unicode strings, describing the [BILUO](/api/annotation#biluo) tags.                                                                            |
 | ||
| 
 | ||
| ### gold.offsets_from_biluo_tags {#offsets_from_biluo_tags tag="function"}
 | ||
| 
 | ||
| Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
 | ||
| entity offsets.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.gold import offsets_from_biluo_tags
 | ||
| >
 | ||
| > doc = nlp(u"I like London.")
 | ||
| > tags = ["O", "O", "U-LOC", "O"]
 | ||
| > entities = offsets_from_biluo_tags(doc, tags)
 | ||
| > assert entities == [(7, 13, "LOC")]
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type     | Description                                                                                                                                                                                                                 |
 | ||
| | ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `doc`       | `Doc`    | The document that the BILUO tags refer to.                                                                                                                                                                                  |
 | ||
| | `entities`  | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
 | ||
| | **RETURNS** | list     | A sequence of `(start, end, label)` triples. `start` and `end` will be character-offset integers denoting the slice into the original string.                                                                               |
 | ||
| 
 | ||
| ### gold.spans_from_biluo_tags {#spans_from_biluo_tags tag="function" new="2.1"}
 | ||
| 
 | ||
| Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
 | ||
| [`Span`](/api/span) objects. This can be used to create entity spans from
 | ||
| token-based tags, e.g. to overwrite the `doc.ents`.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.gold import offsets_from_biluo_tags
 | ||
| >
 | ||
| > doc = nlp(u"I like London.")
 | ||
| > tags = ["O", "O", "U-LOC", "O"]
 | ||
| > doc.ents = spans_from_biluo_tags(doc, tags)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type     | Description                                                                                                                                                                                                                 |
 | ||
| | ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `doc`       | `Doc`    | The document that the BILUO tags refer to.                                                                                                                                                                                  |
 | ||
| | `entities`  | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
 | ||
| | **RETURNS** | list     | A sequence of `Span` objects with added entity labels.                                                                                                                                                                      |
 |