mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-17 21:14:14 +03:00
418 lines
16 KiB
Markdown
418 lines
16 KiB
Markdown
---
|
||
title: Vectors
|
||
teaser: Store, save and load word vectors
|
||
tag: class
|
||
source: spacy/vectors.pyx
|
||
new: 2
|
||
---
|
||
|
||
Vectors data is kept in the `Vectors.data` attribute, which should be an
|
||
instance of `numpy.ndarray` (for CPU vectors) or `cupy.ndarray` (for GPU
|
||
vectors). Multiple keys can be mapped to the same vector, and not all of the
|
||
rows in the table need to be assigned – so `vectors.n_keys` may be greater or
|
||
smaller than `vectors.shape[0]`.
|
||
|
||
## Vectors.\_\_init\_\_ {#init tag="method"}
|
||
|
||
Create a new vector store. You can set the vector values and keys directly on
|
||
initialization, or supply a `shape` keyword argument to create an empty table
|
||
you can add vectors to later.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.vectors import Vectors
|
||
>
|
||
> empty_vectors = Vectors(shape=(10000, 300))
|
||
>
|
||
> data = numpy.zeros((3, 300), dtype='f')
|
||
> keys = ["cat", "dog", "rat"]
|
||
> vectors = Vectors(data=data, keys=keys)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
| `data` | `ndarray[ndim=1, dtype='float32']` | The vector data. |
|
||
| `keys` | iterable | A sequence of keys aligned with the data. |
|
||
| `shape` | tuple | Size of the table as `(n_entries, n_columns)`, the number of entries and number of columns. Not required if you're initializing the object with `data` and `keys`. |
|
||
| `name` | unicode | A name to identify the vectors table. |
|
||
| **RETURNS** | `Vectors` | The newly created object. |
|
||
|
||
## Vectors.\_\_getitem\_\_ {#getitem tag="method"}
|
||
|
||
Get a vector by key. If the key is not found in the table, a `KeyError` is
|
||
raised.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> cat_id = nlp.vocab.strings["cat"]
|
||
> cat_vector = nlp.vocab.vectors[cat_id]
|
||
> assert cat_vector == nlp.vocab["cat"].vector
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------- | ---------------------------------- | ------------------------------ |
|
||
| `key` | int | The key to get the vector for. |
|
||
| returns | `ndarray[ndim=1, dtype='float32']` | The vector for the key. |
|
||
|
||
## Vectors.\_\_setitem\_\_ {#setitem tag="method"}
|
||
|
||
Set a vector for the given key.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> cat_id = nlp.vocab.strings["cat"]
|
||
> vector = numpy.random.uniform(-1, 1, (300,))
|
||
> nlp.vocab.vectors[cat_id] = vector
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------- | ---------------------------------- | ------------------------------ |
|
||
| `key` | int | The key to set the vector for. |
|
||
| `vector` | `ndarray[ndim=1, dtype='float32']` | The vector to set. |
|
||
|
||
## Vectors.\_\_iter\_\_ {#iter tag="method"}
|
||
|
||
Iterate over the keys in the table.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> for key in nlp.vocab.vectors:
|
||
> print(key, nlp.vocab.strings[key])
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ---------- | ---- | ------------------- |
|
||
| **YIELDS** | int | A key in the table. |
|
||
|
||
## Vectors.\_\_len\_\_ {#len tag="method"}
|
||
|
||
Return the number of vectors in the table.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape=(3, 300))
|
||
> assert len(vectors) == 3
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---- | ----------------------------------- |
|
||
| **RETURNS** | int | The number of vectors in the table. |
|
||
|
||
## Vectors.\_\_contains\_\_ {#contains tag="method"}
|
||
|
||
Check whether a key has been mapped to a vector entry in the table.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> cat_id = nlp.vocab.strings["cat"]
|
||
> nlp.vectors.add(cat_id, numpy.random.uniform(-1, 1, (300,)))
|
||
> assert cat_id in vectors
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---- | ----------------------------------- |
|
||
| `key` | int | The key to check. |
|
||
| **RETURNS** | bool | Whether the key has a vector entry. |
|
||
|
||
## Vectors.add {#add tag="method"}
|
||
|
||
Add a key to the table, optionally setting a vector value as well. Keys can be
|
||
mapped to an existing vector by setting `row`, or a new vector can be added.
|
||
When adding unicode keys, keep in mind that the `Vectors` class itself has no
|
||
[`StringStore`](/api/stringstore), so you have to store the hash-to-string
|
||
mapping separately. If you need to manage the strings, you should use the
|
||
`Vectors` via the [`Vocab`](/api/vocab) class, e.g. `vocab.vectors`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vector = numpy.random.uniform(-1, 1, (300,))
|
||
> cat_id = nlp.vocab.strings["cat"]
|
||
> nlp.vocab.vectors.add(cat_id, vector=vector)
|
||
> nlp.vocab.vectors.add("dog", row=0)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---------------------------------- | ----------------------------------------------------- |
|
||
| `key` | unicode / int | The key to add. |
|
||
| `vector` | `ndarray[ndim=1, dtype='float32']` | An optional vector to add for the key. |
|
||
| `row` | int | An optional row number of a vector to map the key to. |
|
||
| **RETURNS** | int | The row the vector was added to. |
|
||
|
||
## Vectors.resize {#resize tag="method"}
|
||
|
||
Resize the underlying vectors array. If `inplace=True`, the memory is
|
||
reallocated. This may cause other references to the data to become invalid, so
|
||
only use `inplace=True` if you're sure that's what you want. If the number of
|
||
vectors is reduced, keys mapped to rows that have been deleted are removed.
|
||
These removed items are returned as a list of `(key, row)` tuples.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> removed = nlp.vocab.vectors.resize((10000, 300))
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | -------------------------------------------------------------------- |
|
||
| `shape` | tuple | A `(rows, dims)` tuple describing the number of rows and dimensions. |
|
||
| `inplace` | bool | Reallocate the memory. |
|
||
| **RETURNS** | list | The removed items as a list of `(key, row)` tuples. |
|
||
|
||
## Vectors.keys {#keys tag="method"}
|
||
|
||
A sequence of the keys in the table.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> for key in nlp.vocab.vectors.keys():
|
||
> print(key, nlp.vocab.strings[key])
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | -------- | ----------- |
|
||
| **RETURNS** | iterable | The keys. |
|
||
|
||
## Vectors.values {#values tag="method"}
|
||
|
||
Iterate over vectors that have been assigned to at least one key. Note that some
|
||
vectors may be unassigned, so the number of vectors returned may be less than
|
||
the length of the vectors table.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> for vector in nlp.vocab.vectors.values():
|
||
> print(vector)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ---------- | ---------------------------------- | ---------------------- |
|
||
| **YIELDS** | `ndarray[ndim=1, dtype='float32']` | A vector in the table. |
|
||
|
||
## Vectors.items {#items tag="method"}
|
||
|
||
Iterate over `(key, vector)` pairs, in order.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> for key, vector in nlp.vocab.vectors.items():
|
||
> print(key, nlp.vocab.strings[key], vector)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ---------- | ----- | -------------------------------- |
|
||
| **YIELDS** | tuple | `(key, vector)` pairs, in order. |
|
||
|
||
## Vectors.find {#find tag="method"}
|
||
|
||
Look up one or more keys by row, or vice versa.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> row = nlp.vocab.vectors.find(key="cat")
|
||
> rows = nlp.vocab.vectors.find(keys=["cat", "dog"])
|
||
> key = nlp.vocab.vectors.find(row=256)
|
||
> keys = nlp.vocab.vectors.find(rows=[18, 256, 985])
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ------------------------------------- | ------------------------------------------------------------------------ |
|
||
| `key` | unicode / int | Find the row that the given key points to. Returns int, `-1` if missing. |
|
||
| `keys` | iterable | Find rows that the keys point to. Returns `ndarray`. |
|
||
| `row` | int | Find the first key that points to the row. Returns int. |
|
||
| `rows` | iterable | Find the keys that point to the rows. Returns ndarray. |
|
||
| **RETURNS** | The requested key, keys, row or rows. |
|
||
|
||
## Vectors.shape {#shape tag="property"}
|
||
|
||
Get `(rows, dims)` tuples of number of rows and number of dimensions in the
|
||
vector table.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape(1, 300))
|
||
> vectors.add("cat", numpy.random.uniform(-1, 1, (300,)))
|
||
> rows, dims = vectors.shape
|
||
> assert rows == 1
|
||
> assert dims == 300
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | ---------------------- |
|
||
| **RETURNS** | tuple | A `(rows, dims)` pair. |
|
||
|
||
## Vectors.size {#size tag="property"}
|
||
|
||
The vector size, i.e. `rows * dims`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape=(500, 300))
|
||
> assert vectors.size == 150000
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---- | ---------------- |
|
||
| **RETURNS** | int | The vector size. |
|
||
|
||
## Vectors.is_full {#is_full tag="property"}
|
||
|
||
Whether the vectors table is full and has no slots are available for new keys.
|
||
If a table is full, it can be resized using
|
||
[`Vectors.resize`](/api/vectors#resize).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape=(1, 300))
|
||
> vectors.add("cat", numpy.random.uniform(-1, 1, (300,)))
|
||
> assert vectors.is_full
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---- | ---------------------------------- |
|
||
| **RETURNS** | bool | Whether the vectors table is full. |
|
||
|
||
## Vectors.n_keys {#n_keys tag="property"}
|
||
|
||
Get the number of keys in the table. Note that this is the number of _all_ keys,
|
||
not just unique vectors. If several keys are mapped are mapped to the same
|
||
vectors, they will be counted individually.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(shape=(10, 300))
|
||
> assert len(vectors) == 10
|
||
> assert vectors.n_keys == 0
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---- | ------------------------------------ |
|
||
| **RETURNS** | int | The number of all keys in the table. |
|
||
|
||
## Vectors.most_similar {#most_similar tag="method"}
|
||
|
||
For each of the given vectors, find the `n` most similar entries to it, by
|
||
cosine. Queries are by vector. Results are returned as a
|
||
`(keys, best_rows, scores)` tuple. If `queries` is large, the calculations are
|
||
performed in chunks, to avoid consuming too much memory. You can set the
|
||
`batch_size` to control the size/space trade-off during the calculations.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> queries = numpy.asarray([numpy.random.uniform(-1, 1, (300,))])
|
||
> most_similar = nlp.vectors.most_similar(queries, n=10)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------------ | --------- | ------------------------------------------------------------------ |
|
||
| `queries` | `ndarray` | An array with one or more vectors. |
|
||
| `batch_size` | int | The batch size to use. Default to `1024`. |
|
||
| `n` | int | The number of entries to return for each query. Defaults to `1`. |
|
||
| `sort` | bool | Whether to sort the entries returned by score. Defaults to `True`. |
|
||
| **RETURNS** | tuple | The most similar entries as a `(keys, best_rows, scores)` tuple. |
|
||
|
||
## Vectors.from_glove {#from_glove tag="method"}
|
||
|
||
Load [GloVe](https://nlp.stanford.edu/projects/glove/) vectors from a directory.
|
||
Assumes binary format, that the vocab is in a `vocab.txt`, and that vectors are
|
||
named `vectors.{size}.[fd.bin]`, e.g. `vectors.128.f.bin` for 128d float32
|
||
vectors, `vectors.300.d.bin` for 300d float64 (double) vectors, etc. By default
|
||
GloVe outputs 64-bit vectors.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors()
|
||
> vectors.from_glove("/path/to/glove_vectors")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------ | ---------------- | ---------------------------------------- |
|
||
| `path` | unicode / `Path` | The path to load the GloVe vectors from. |
|
||
|
||
## Vectors.to_disk {#to_disk tag="method"}
|
||
|
||
Save the current state to a directory.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors.to_disk("/path/to/vectors")
|
||
>
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------ | ---------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||
| `path` | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||
|
||
## Vectors.from_disk {#from_disk tag="method"}
|
||
|
||
Loads state from a directory. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors = Vectors(StringStore())
|
||
> vectors.from_disk("/path/to/vectors")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---------------- | -------------------------------------------------------------------------- |
|
||
| `path` | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
||
| **RETURNS** | `Vectors` | The modified `Vectors` object. |
|
||
|
||
## Vectors.to_bytes {#to_bytes tag="method"}
|
||
|
||
Serialize the current state to a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vectors_bytes = vectors.to_bytes()
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | -------------------------------------------- |
|
||
| **RETURNS** | bytes | The serialized form of the `Vectors` object. |
|
||
|
||
## Vectors.from_bytes {#from_bytes tag="method"}
|
||
|
||
Load state from a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> fron spacy.vectors import Vectors
|
||
> vectors_bytes = vectors.to_bytes()
|
||
> new_vectors = Vectors(StringStore())
|
||
> new_vectors.from_bytes(vectors_bytes)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | --------- | ---------------------- |
|
||
| `data` | bytes | The data to load from. |
|
||
| **RETURNS** | `Vectors` | The `Vectors` object. |
|
||
|
||
## Attributes {#attributes}
|
||
|
||
| Name | Type | Description |
|
||
| --------- | ---------------------------------- | ------------------------------------------------------------------------------- |
|
||
| `data` | `ndarray[ndim=1, dtype='float32']` | Stored vectors data. `numpy` is used for CPU vectors, `cupy` for GPU vectors. |
|
||
| `key2row` | dict | Dictionary mapping word hashes to rows in the `Vectors.data` table. |
|
||
| `keys` | `ndarray[ndim=1, dtype='float32']` | Array keeping the keys in order, such that `keys[vectors.key2row[key]] == key`. |
|