mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
e117573822
* ✨ implement noun_chunks for dutch language * copy/paste FR and SV syntax iterators to accomodate UD tags * added tests with dutch text * signed contributor agreement * 🐛 fix noun chunks generator * built from scratch * define noun chunk as a single Noun-Phrase * includes some corner cases debugging (incorrect POS tagging) * test with provided annotated sample (POS, DEP) * ✅ fix failing test * CI pipeline did not like the added sample file * add the sample as a pytest fixture * Update spacy/lang/nl/syntax_iterators.py * Update spacy/lang/nl/syntax_iterators.py Code readability Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/tests/lang/nl/test_noun_chunks.py correct comment Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * finalize code * change "if next_word" into "if next_word is not None" Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
43 lines
1.1 KiB
Python
43 lines
1.1 KiB
Python
from typing import Optional
|
|
|
|
from thinc.api import Model
|
|
|
|
from .lemmatizer import DutchLemmatizer
|
|
from .lex_attrs import LEX_ATTRS
|
|
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
|
|
from .punctuation import TOKENIZER_SUFFIXES
|
|
from .stop_words import STOP_WORDS
|
|
from .syntax_iterators import SYNTAX_ITERATORS
|
|
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
|
from ...language import Language
|
|
|
|
|
|
class DutchDefaults(Language.Defaults):
|
|
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
|
prefixes = TOKENIZER_PREFIXES
|
|
infixes = TOKENIZER_INFIXES
|
|
suffixes = TOKENIZER_SUFFIXES
|
|
lex_attr_getters = LEX_ATTRS
|
|
syntax_iterators = SYNTAX_ITERATORS
|
|
stop_words = STOP_WORDS
|
|
|
|
|
|
class Dutch(Language):
|
|
lang = "nl"
|
|
Defaults = DutchDefaults
|
|
|
|
|
|
@Dutch.factory(
|
|
"lemmatizer",
|
|
assigns=["token.lemma"],
|
|
default_config={"model": None, "mode": "rule", "overwrite": False},
|
|
default_score_weights={"lemma_acc": 1.0},
|
|
)
|
|
def make_lemmatizer(
|
|
nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool
|
|
):
|
|
return DutchLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite)
|
|
|
|
|
|
__all__ = ["Dutch"]
|