mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			323 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Example
 | |
| teaser: A training instance
 | |
| tag: class
 | |
| source: spacy/gold/example.pyx
 | |
| new: 3.0
 | |
| ---
 | |
| 
 | |
| An `Example` holds the information for one training instance. It stores two
 | |
| `Doc` objects: one for holding the gold-standard reference data, and one for
 | |
| holding the predictions of the pipeline. An
 | |
| [`Alignment`](/api/example#alignment-object) object stores the alignment between
 | |
| these two documents, as they can differ in tokenization.
 | |
| 
 | |
| ## Example.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| Construct an `Example` object from the `predicted` document and the `reference`
 | |
| document. If `alignment` is `None`, it will be initialized from the words in
 | |
| both documents.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.tokens import Doc
 | |
| > from spacy.gold import Example
 | |
| >
 | |
| > words = ["hello", "world", "!"]
 | |
| > spaces = [True, False, False]
 | |
| > predicted = Doc(nlp.vocab, words=words, spaces=spaces)
 | |
| > reference = parse_gold_doc(my_data)
 | |
| > example = Example(predicted, reference)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `predicted`    | The document containing (partial) predictions. Can not be `None`. ~~Doc~~                                                |
 | |
| | `reference`    | The document containing gold-standard annotations. Can not be `None`. ~~Doc~~                                            |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `alignment`    | An object holding the alignment between the tokens of the `predicted` and `reference` documents. ~~Optional[Alignment]~~ |
 | |
| 
 | |
| ## Example.from_dict {#from_dict tag="classmethod"}
 | |
| 
 | |
| Construct an `Example` object from the `predicted` document and the reference
 | |
| annotations provided as a dictionary. For more details on the required format,
 | |
| see the [training format documentation](/api/data-formats#dict-input).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.tokens import Doc
 | |
| > from spacy.gold import Example
 | |
| >
 | |
| > predicted = Doc(vocab, words=["Apply", "some", "sunscreen"])
 | |
| > token_ref = ["Apply", "some", "sun", "screen"]
 | |
| > tags_ref = ["VERB", "DET", "NOUN", "NOUN"]
 | |
| > example = Example.from_dict(predicted, {"words": token_ref, "tags": tags_ref})
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                               |
 | |
| | -------------- | ------------------------------------------------------------------------- |
 | |
| | `predicted`    | The document containing (partial) predictions. Can not be `None`. ~~Doc~~ |
 | |
| | `example_dict` | `Dict[str, obj]`                                                          | The gold-standard annotations as a dictionary. Can not be `None`. ~~Dict[str, Any]~~ |
 | |
| | **RETURNS**    | The newly constructed object. ~~Example~~                                 |
 | |
| 
 | |
| ## Example.text {#text tag="property"}
 | |
| 
 | |
| The text of the `predicted` document in this `Example`.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > raw_text = example.text
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                   |
 | |
| | ----------- | --------------------------------------------- |
 | |
| | **RETURNS** | The text of the `predicted` document. ~~str~~ |
 | |
| 
 | |
| ## Example.predicted {#predicted tag="property"}
 | |
| 
 | |
| The `Doc` holding the predictions. Occasionally also referred to as `example.x`.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > docs = [eg.predicted for eg in examples]
 | |
| > predictions, _ = model.begin_update(docs)
 | |
| > set_annotations(docs, predictions)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                            |
 | |
| | ----------- | ------------------------------------------------------ |
 | |
| | **RETURNS** | The document containing (partial) predictions. ~~Doc~~ |
 | |
| 
 | |
| ## Example.reference {#reference tag="property"}
 | |
| 
 | |
| The `Doc` holding the gold-standard annotations. Occasionally also referred to
 | |
| as `example.y`.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > for i, eg in enumerate(examples):
 | |
| >     for j, label in enumerate(all_labels):
 | |
| >         gold_labels[i][j] = eg.reference.cats.get(label, 0.0)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                |
 | |
| | ----------- | ---------------------------------------------------------- |
 | |
| | **RETURNS** | The document containing gold-standard annotations. ~~Doc~~ |
 | |
| 
 | |
| ## Example.alignment {#alignment tag="property"}
 | |
| 
 | |
| The [`Alignment`](/api/example#alignment-object) object mapping the tokens of
 | |
| the `predicted` document to those of the `reference` document.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tokens_x = ["Apply", "some", "sunscreen"]
 | |
| > x = Doc(vocab, words=tokens_x)
 | |
| > tokens_y = ["Apply", "some", "sun", "screen"]
 | |
| > example = Example.from_dict(x, {"words": tokens_y})
 | |
| > alignment = example.alignment
 | |
| > assert list(alignment.y2x.data) == [[0], [1], [2], [2]]
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                      |
 | |
| | ----------- | ---------------------------------------------------------------- |
 | |
| | **RETURNS** | The document containing gold-standard annotations. ~~Alignment~~ |
 | |
| 
 | |
| ## Example.get_aligned {#get_aligned tag="method"}
 | |
| 
 | |
| Get the aligned view of a certain token attribute, denoted by its int ID or
 | |
| string name.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > predicted = Doc(vocab, words=["Apply", "some", "sunscreen"])
 | |
| > token_ref = ["Apply", "some", "sun", "screen"]
 | |
| > tags_ref = ["VERB", "DET", "NOUN", "NOUN"]
 | |
| > example = Example.from_dict(predicted, {"words": token_ref, "tags": tags_ref})
 | |
| > assert example.get_aligned("TAG", as_string=True) == ["VERB", "DET", "NOUN"]
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                                        |
 | |
| | ----------- | -------------------------------------------------------------------------------------------------- |
 | |
| | `field`     | Attribute ID or string name. ~~Union[int, str]~~                                                   |
 | |
| | `as_string` | Whether or not to return the list of values as strings. Defaults to `False`. ~~bool~~              |
 | |
| | **RETURNS** | List of integer values, or string values if `as_string` is `True`. ~~Union[List[int], List[str]]~~ |
 | |
| 
 | |
| ## Example.get_aligned_parse {#get_aligned_parse tag="method"}
 | |
| 
 | |
| Get the aligned view of the dependency parse. If `projectivize` is set to
 | |
| `True`, non-projective dependency trees are made projective through the
 | |
| Pseudo-Projective Dependency Parsing algorithm by Nivre and Nilsson (2005).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("He pretty quickly walks away")
 | |
| > example = Example.from_dict(doc, {"heads": [3, 2, 3, 0, 2]})
 | |
| > proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
 | |
| > assert proj_heads == [3, 2, 3, 0, 3]
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                        |
 | |
| | -------------- | -------------------------------------------------------------------------------------------------- |
 | |
| | `projectivize` | Whether or not to projectivize the dependency trees. Defaults to `True`. ~~bool~~                  |
 | |
| | **RETURNS**    | List of integer values, or string values if `as_string` is `True`. ~~Union[List[int], List[str]]~~ |
 | |
| 
 | |
| ## Example.get_aligned_ner {#get_aligned_ner tag="method"}
 | |
| 
 | |
| Get the aligned view of the NER
 | |
| [BILUO](/usage/linguistic-features#accessing-ner) tags.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > words = ["Mrs", "Smith", "flew", "to", "New York"]
 | |
| > doc = Doc(en_vocab, words=words)
 | |
| > entities = [(0, 9, "PERSON"), (18, 26, "LOC")]
 | |
| > gold_words = ["Mrs Smith", "flew", "to", "New", "York"]
 | |
| > example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
| > ner_tags = example.get_aligned_ner()
 | |
| > assert ner_tags == ["B-PERSON", "L-PERSON", "O", "O", "U-LOC"]
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                                       |
 | |
| | ----------- | ------------------------------------------------------------------------------------------------- |
 | |
| | **RETURNS** | List of BILUO values, denoting whether tokens are part of an NER annotation or not. ~~List[str]~~ |
 | |
| 
 | |
| ## Example.get_aligned_spans_y2x {#get_aligned_spans_y2x tag="method"}
 | |
| 
 | |
| Get the aligned view of any set of [`Span`](/api/span) objects defined over
 | |
| [`Example.reference`](/api/example#reference). The resulting span indices will
 | |
| align to the tokenization in [`Example.predicted`](/api/example#predicted).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > words = ["Mr and Mrs Smith", "flew", "to", "New York"]
 | |
| > doc = Doc(en_vocab, words=words)
 | |
| > entities = [(0, 16, "PERSON")]
 | |
| > tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "New", "York"]
 | |
| > example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
 | |
| > ents_ref = example.reference.ents
 | |
| > assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4)]
 | |
| > ents_y2x = example.get_aligned_spans_y2x(ents_ref)
 | |
| > assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1)]
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                   |
 | |
| | ----------- | ----------------------------------------------------------------------------- |
 | |
| | `y_spans`   | `Span` objects aligned to the tokenization of `reference`. ~~Iterable[Span]~~ |
 | |
| | **RETURNS** | `Span` objects aligned to the tokenization of `predicted`. ~~List[Span]~~     |
 | |
| 
 | |
| ## Example.get_aligned_spans_x2y {#get_aligned_spans_x2y tag="method"}
 | |
| 
 | |
| Get the aligned view of any set of [`Span`](/api/span) objects defined over
 | |
| [`Example.predicted`](/api/example#predicted). The resulting span indices will
 | |
| align to the tokenization in [`Example.reference`](/api/example#reference). This
 | |
| method is particularly useful to assess the accuracy of predicted entities
 | |
| against the original gold-standard annotation.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > nlp.add_pipe("my_ner")
 | |
| > doc = nlp("Mr and Mrs Smith flew to New York")
 | |
| > tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "New York"]
 | |
| > example = Example.from_dict(doc, {"words": tokens_ref})
 | |
| > ents_pred = example.predicted.ents
 | |
| > # Assume the NER model has found "Mr and Mrs Smith" as a named entity
 | |
| > assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4)]
 | |
| > ents_x2y = example.get_aligned_spans_x2y(ents_pred)
 | |
| > assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2)]
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                   |
 | |
| | ----------- | ----------------------------------------------------------------------------- |
 | |
| | `x_spans`   | `Span` objects aligned to the tokenization of `predicted`. ~~Iterable[Span]~~ |
 | |
| | **RETURNS** | `Span` objects aligned to the tokenization of `reference`. ~~List[Span]~~     |
 | |
| 
 | |
| ## Example.to_dict {#to_dict tag="method"}
 | |
| 
 | |
| Return a [dictionary representation](/api/data-formats#dict-input) of the
 | |
| reference annotation contained in this `Example`.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > eg_dict = example.to_dict()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                               |
 | |
| | ----------- | ------------------------------------------------------------------------- |
 | |
| | **RETURNS** | Dictionary representation of the reference annotation. ~~Dict[str, Any]~~ |
 | |
| 
 | |
| ## Example.split_sents {#split_sents tag="method"}
 | |
| 
 | |
| Split one `Example` into multiple `Example` objects, one for each sentence.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("I went yesterday had lots of fun")
 | |
| > tokens_ref = ["I", "went", "yesterday", "had", "lots", "of", "fun"]
 | |
| > sents_ref = [True, False, False, True, False, False, False]
 | |
| > example = Example.from_dict(doc, {"words": tokens_ref, "sent_starts": sents_ref})
 | |
| > split_examples = example.split_sents()
 | |
| > assert split_examples[0].text == "I went yesterday "
 | |
| > assert split_examples[1].text == "had lots of fun"
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                  |
 | |
| | ----------- | ---------------------------------------------------------------------------- |
 | |
| | **RETURNS** | List of `Example` objects, one for each original sentence. ~~List[Example]~~ |
 | |
| 
 | |
| ## Alignment {#alignment-object new="3"}
 | |
| 
 | |
| Calculate alignment tables between two tokenizations.
 | |
| 
 | |
| ### Alignment attributes {#alignment-attributes"}
 | |
| 
 | |
| | Name  | Description                                                           |
 | |
| | ----- | --------------------------------------------------------------------- |
 | |
| | `x2y` | The `Ragged` object holding the alignment from `x` to `y`. ~~Ragged~~ |
 | |
| | `y2x` | The `Ragged` object holding the alignment from `y` to `x`. ~~Ragged~~ |
 | |
| 
 | |
| <Infobox title="Important note" variant="warning">
 | |
| 
 | |
| The current implementation of the alignment algorithm assumes that both
 | |
| tokenizations add up to the same string. For example, you'll be able to align
 | |
| `["I", "'", "m"]` and `["I", "'m"]`, which both add up to `"I'm"`, but not
 | |
| `["I", "'m"]` and `["I", "am"]`.
 | |
| 
 | |
| </Infobox>
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.gold import Alignment
 | |
| >
 | |
| > bert_tokens = ["obama", "'", "s", "podcast"]
 | |
| > spacy_tokens = ["obama", "'s", "podcast"]
 | |
| > alignment = Alignment.from_strings(bert_tokens, spacy_tokens)
 | |
| > a2b = alignment.x2y
 | |
| > assert list(a2b.dataXd) == [0, 1, 1, 2]
 | |
| > ```
 | |
| >
 | |
| > If `a2b.dataXd[1] == a2b.dataXd[2] == 1`, that means that `A[1]` (`"'"`) and
 | |
| > `A[2]` (`"s"`) both align to `B[1]` (`"'s"`).
 | |
| 
 | |
| ### Alignment.from_strings {#classmethod tag="function"}
 | |
| 
 | |
| | Name        | Description                                                   |
 | |
| | ----------- | ------------------------------------------------------------- |
 | |
| | `A`         | String values of candidate tokens to align. ~~List[str]~~     |
 | |
| | `B`         | String values of reference tokens to align. ~~List[str]~~     |
 | |
| | **RETURNS** | An `Alignment` object describing the alignment. ~~Alignment~~ |
 |