mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
		
			
				
	
	
		
			176 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			176 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from spacy import registry
 | |
| from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer
 | |
| from spacy.pipeline import TextCategorizer, SentenceRecognizer
 | |
| from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
 | |
| from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL
 | |
| from spacy.pipeline.textcat import DEFAULT_TEXTCAT_MODEL
 | |
| from spacy.pipeline.senter import DEFAULT_SENTER_MODEL
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| 
 | |
| test_parsers = [DependencyParser, EntityRecognizer]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def parser(en_vocab):
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 30,
 | |
|         "update_with_oracle_cut_size": 100,
 | |
|     }
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|     parser = DependencyParser(en_vocab, model, **config)
 | |
|     parser.add_label("nsubj")
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def blank_parser(en_vocab):
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 30,
 | |
|         "update_with_oracle_cut_size": 100,
 | |
|     }
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|     parser = DependencyParser(en_vocab, model, **config)
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def taggers(en_vocab):
 | |
|     cfg = {"model": DEFAULT_TAGGER_MODEL}
 | |
|     model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|     tagger1 = Tagger(en_vocab, model)
 | |
|     tagger2 = Tagger(en_vocab, model)
 | |
|     return tagger1, tagger2
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("Parser", test_parsers)
 | |
| def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 0,
 | |
|         "update_with_oracle_cut_size": 100,
 | |
|     }
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|     parser = Parser(en_vocab, model, **config)
 | |
|     new_parser = Parser(en_vocab, model, **config)
 | |
|     new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"]))
 | |
|     bytes_2 = new_parser.to_bytes(exclude=["vocab"])
 | |
|     bytes_3 = parser.to_bytes(exclude=["vocab"])
 | |
|     assert len(bytes_2) == len(bytes_3)
 | |
|     assert bytes_2 == bytes_3
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("Parser", test_parsers)
 | |
| def test_serialize_parser_roundtrip_disk(en_vocab, Parser):
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 0,
 | |
|         "update_with_oracle_cut_size": 100,
 | |
|     }
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|     parser = Parser(en_vocab, model, **config)
 | |
|     with make_tempdir() as d:
 | |
|         file_path = d / "parser"
 | |
|         parser.to_disk(file_path)
 | |
|         parser_d = Parser(en_vocab, model, **config)
 | |
|         parser_d = parser_d.from_disk(file_path)
 | |
|         parser_bytes = parser.to_bytes(exclude=["model", "vocab"])
 | |
|         parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"])
 | |
|         assert len(parser_bytes) == len(parser_d_bytes)
 | |
|         assert parser_bytes == parser_d_bytes
 | |
| 
 | |
| 
 | |
| def test_to_from_bytes(parser, blank_parser):
 | |
|     assert parser.model is not True
 | |
|     assert blank_parser.model is not True
 | |
|     assert blank_parser.moves.n_moves != parser.moves.n_moves
 | |
|     bytes_data = parser.to_bytes(exclude=["vocab"])
 | |
|     # the blank parser needs to be resized before we can call from_bytes
 | |
|     blank_parser.model.attrs["resize_output"](blank_parser.model, parser.moves.n_moves)
 | |
|     blank_parser.from_bytes(bytes_data)
 | |
|     assert blank_parser.model is not True
 | |
|     assert blank_parser.moves.n_moves == parser.moves.n_moves
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(
 | |
|     reason="This seems to be a dict ordering bug somewhere. Only failing on some platforms."
 | |
| )
 | |
| def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers):
 | |
|     tagger1 = taggers[0]
 | |
|     tagger1_b = tagger1.to_bytes()
 | |
|     tagger1 = tagger1.from_bytes(tagger1_b)
 | |
|     assert tagger1.to_bytes() == tagger1_b
 | |
|     cfg = {"model": DEFAULT_TAGGER_MODEL}
 | |
|     model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|     new_tagger1 = Tagger(en_vocab, model).from_bytes(tagger1_b)
 | |
|     new_tagger1_b = new_tagger1.to_bytes()
 | |
|     assert len(new_tagger1_b) == len(tagger1_b)
 | |
|     assert new_tagger1_b == tagger1_b
 | |
| 
 | |
| 
 | |
| def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
 | |
|     tagger1, tagger2 = taggers
 | |
|     with make_tempdir() as d:
 | |
|         file_path1 = d / "tagger1"
 | |
|         file_path2 = d / "tagger2"
 | |
|         tagger1.to_disk(file_path1)
 | |
|         tagger2.to_disk(file_path2)
 | |
|         cfg = {"model": DEFAULT_TAGGER_MODEL}
 | |
|         model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|         tagger1_d = Tagger(en_vocab, model).from_disk(file_path1)
 | |
|         tagger2_d = Tagger(en_vocab, model).from_disk(file_path2)
 | |
|         assert tagger1_d.to_bytes() == tagger2_d.to_bytes()
 | |
| 
 | |
| 
 | |
| def test_serialize_textcat_empty(en_vocab):
 | |
|     # See issue #1105
 | |
|     cfg = {"model": DEFAULT_TEXTCAT_MODEL}
 | |
|     model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|     textcat = TextCategorizer(en_vocab, model, labels=["ENTITY", "ACTION", "MODIFIER"])
 | |
|     textcat.to_bytes(exclude=["vocab"])
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("Parser", test_parsers)
 | |
| def test_serialize_pipe_exclude(en_vocab, Parser):
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 0,
 | |
|         "update_with_oracle_cut_size": 100,
 | |
|     }
 | |
| 
 | |
|     def get_new_parser():
 | |
|         new_parser = Parser(en_vocab, model, **config)
 | |
|         return new_parser
 | |
| 
 | |
|     parser = Parser(en_vocab, model, **config)
 | |
|     parser.cfg["foo"] = "bar"
 | |
|     new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]))
 | |
|     assert "foo" in new_parser.cfg
 | |
|     new_parser = get_new_parser().from_bytes(
 | |
|         parser.to_bytes(exclude=["vocab"]), exclude=["cfg"]
 | |
|     )
 | |
|     assert "foo" not in new_parser.cfg
 | |
|     new_parser = get_new_parser().from_bytes(
 | |
|         parser.to_bytes(exclude=["cfg"]), exclude=["vocab"]
 | |
|     )
 | |
|     assert "foo" not in new_parser.cfg
 | |
| 
 | |
| 
 | |
| def test_serialize_sentencerecognizer(en_vocab):
 | |
|     cfg = {"model": DEFAULT_SENTER_MODEL}
 | |
|     model = registry.make_from_config(cfg, validate=True)["model"]
 | |
|     sr = SentenceRecognizer(en_vocab, model)
 | |
|     sr_b = sr.to_bytes()
 | |
|     sr_d = SentenceRecognizer(en_vocab, model).from_bytes(sr_b)
 | |
|     assert sr.to_bytes() == sr_d.to_bytes()
 |