mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
569cc98982
* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
223 lines
7.9 KiB
Python
223 lines
7.9 KiB
Python
from spacy import util
|
|
from spacy.ml.extract_ngrams import extract_ngrams
|
|
|
|
from ..attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
|
from ..errors import Errors
|
|
from ._character_embed import CharacterEmbed
|
|
|
|
from thinc.api import Model, Maxout, Linear, residual, reduce_mean, list2ragged
|
|
from thinc.api import PyTorchLSTM, add, MultiSoftmax, HashEmbed, StaticVectors
|
|
from thinc.api import expand_window, FeatureExtractor, SparseLinear, chain
|
|
from thinc.api import clone, concatenate, with_array, Softmax, Logistic, uniqued
|
|
from thinc.api import zero_init, glorot_uniform_init
|
|
|
|
|
|
def build_text_classifier(arch, config):
|
|
if arch == "cnn":
|
|
return build_simple_cnn_text_classifier(**config)
|
|
elif arch == "bow":
|
|
return build_bow_text_classifier(**config)
|
|
else:
|
|
raise ValueError("Unexpected textcat arch")
|
|
|
|
|
|
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes, **cfg):
|
|
"""
|
|
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
|
If exclusive_classes=True, a softmax non-linearity is applied, so that the
|
|
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
|
|
is applied instead, so that outputs are in the range [0, 1].
|
|
"""
|
|
with Model.define_operators({">>": chain}):
|
|
if exclusive_classes:
|
|
output_layer = Softmax(nO=nr_class, nI=tok2vec.get_dim("nO"))
|
|
else:
|
|
# TODO: experiment with init_w=zero_init
|
|
output_layer = (
|
|
Linear(nO=nr_class, nI=tok2vec.get_dim("nO"))
|
|
>> Logistic()
|
|
)
|
|
model = tok2vec >> list2ragged() >> reduce_mean() >> output_layer
|
|
model.set_ref("tok2vec", tok2vec)
|
|
model.set_dim("nO", nr_class)
|
|
return model
|
|
|
|
|
|
def build_bow_text_classifier(
|
|
nr_class, exclusive_classes, ngram_size=1, no_output_layer=False, **cfg
|
|
):
|
|
with Model.define_operators({">>": chain}):
|
|
model = extract_ngrams(ngram_size, attr=ORTH) >> SparseLinear(nr_class)
|
|
model.to_cpu()
|
|
if not no_output_layer:
|
|
output_layer = (
|
|
Softmax(nO=nr_class) if exclusive_classes else Logistic(nO=nr_class)
|
|
)
|
|
output_layer.to_cpu()
|
|
model = model >> output_layer
|
|
model.set_dim("nO", nr_class)
|
|
return model
|
|
|
|
|
|
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
|
|
if "entity_width" not in cfg:
|
|
raise ValueError(Errors.E144.format(param="entity_width"))
|
|
|
|
conv_depth = cfg.get("conv_depth", 2)
|
|
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
|
|
pretrained_vectors = cfg.get("pretrained_vectors", None)
|
|
context_width = cfg.get("entity_width")
|
|
|
|
with Model.define_operators({">>": chain, "**": clone}):
|
|
nel_tok2vec = Tok2Vec(
|
|
width=hidden_width,
|
|
embed_size=embed_width,
|
|
pretrained_vectors=pretrained_vectors,
|
|
cnn_maxout_pieces=cnn_maxout_pieces,
|
|
subword_features=True,
|
|
conv_depth=conv_depth,
|
|
bilstm_depth=0,
|
|
)
|
|
|
|
model = (
|
|
nel_tok2vec
|
|
>> list2ragged()
|
|
>> reduce_mean()
|
|
>> residual(Maxout(nO=hidden_width, nI=hidden_width, nP=2, dropout=0.0))
|
|
>> Linear(nO=context_width, nI=hidden_width)
|
|
)
|
|
model.initialize()
|
|
|
|
model.set_ref("tok2vec", nel_tok2vec)
|
|
model.set_dim("nO", context_width)
|
|
return model
|
|
|
|
|
|
def masked_language_model(*args, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
|
|
def build_tagger_model(nr_class, tok2vec):
|
|
token_vector_width = tok2vec.get_dim("nO")
|
|
# TODO: glorot_uniform_init seems to work a bit better than zero_init here?!
|
|
softmax = with_array(Softmax(nO=nr_class, nI=token_vector_width, init_W=zero_init))
|
|
model = chain(tok2vec, softmax)
|
|
model.set_ref("tok2vec", tok2vec)
|
|
model.set_ref("softmax", softmax)
|
|
return model
|
|
|
|
|
|
def build_morphologizer_model(class_nums, **cfg):
|
|
embed_size = util.env_opt("embed_size", 7000)
|
|
if "token_vector_width" in cfg:
|
|
token_vector_width = cfg["token_vector_width"]
|
|
else:
|
|
token_vector_width = util.env_opt("token_vector_width", 128)
|
|
pretrained_vectors = cfg.get("pretrained_vectors")
|
|
char_embed = cfg.get("char_embed", True)
|
|
with Model.define_operators({">>": chain, "+": add, "**": clone}):
|
|
if "tok2vec" in cfg:
|
|
tok2vec = cfg["tok2vec"]
|
|
else:
|
|
tok2vec = Tok2Vec(
|
|
token_vector_width,
|
|
embed_size,
|
|
char_embed=char_embed,
|
|
pretrained_vectors=pretrained_vectors,
|
|
)
|
|
softmax = with_array(MultiSoftmax(nOs=class_nums, nI=token_vector_width))
|
|
model = tok2vec >> softmax
|
|
model.set_ref("tok2vec", tok2vec)
|
|
model.set_ref("softmax", softmax)
|
|
return model
|
|
|
|
|
|
def Tok2Vec(
|
|
width,
|
|
embed_size,
|
|
pretrained_vectors=None,
|
|
window_size=1,
|
|
cnn_maxout_pieces=3,
|
|
subword_features=True,
|
|
char_embed=False,
|
|
conv_depth=4,
|
|
bilstm_depth=0,
|
|
):
|
|
if char_embed:
|
|
subword_features = False
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
|
norm = HashEmbed(nO=width, nV=embed_size, column=cols.index(NORM), dropout=0.0)
|
|
if subword_features:
|
|
prefix = HashEmbed(nO=width, nV=embed_size // 2, column=cols.index(PREFIX), dropout=0.0)
|
|
suffix = HashEmbed(nO=width, nV=embed_size // 2, column=cols.index(SUFFIX), dropout=0.0)
|
|
shape = HashEmbed(nO=width, nV=embed_size // 2, column=cols.index(SHAPE), dropout=0.0)
|
|
else:
|
|
prefix, suffix, shape = (None, None, None)
|
|
if pretrained_vectors is not None:
|
|
glove = StaticVectors(vectors=pretrained_vectors, nO=width, column=cols.index(ID), dropout=0.0)
|
|
|
|
if subword_features:
|
|
embed = uniqued(
|
|
(glove | norm | prefix | suffix | shape)
|
|
>> Maxout(
|
|
nO=width, nI=width * 5, nP=3, dropout=0.0, normalize=True
|
|
),
|
|
column=cols.index(ORTH),
|
|
)
|
|
else:
|
|
embed = uniqued(
|
|
(glove | norm)
|
|
>> Maxout(
|
|
nO=width, nI=width * 2, nP=3, dropout=0.0, normalize=True
|
|
),
|
|
column=cols.index(ORTH),
|
|
)
|
|
elif subword_features:
|
|
embed = uniqued(
|
|
concatenate(norm, prefix, suffix, shape)
|
|
>> Maxout(nO=width, nI=width * 4, nP=3, dropout=0.0, normalize=True),
|
|
column=cols.index(ORTH),
|
|
)
|
|
elif char_embed:
|
|
embed = CharacterEmbed(nM=64, nC=8) | FeatureExtractor(cols) >> with_array(
|
|
norm
|
|
)
|
|
reduce_dimensions = Maxout(
|
|
nO=width,
|
|
nI=64 * 8 + width,
|
|
nP=cnn_maxout_pieces,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
)
|
|
else:
|
|
embed = norm
|
|
|
|
convolution = residual(
|
|
expand_window(window_size=window_size)
|
|
>> Maxout(
|
|
nO=width,
|
|
nI=width * 3,
|
|
nP=cnn_maxout_pieces,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
)
|
|
)
|
|
if char_embed:
|
|
tok2vec = embed >> with_array(
|
|
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
|
|
)
|
|
else:
|
|
tok2vec = FeatureExtractor(cols) >> with_array(
|
|
embed >> convolution ** conv_depth, pad=conv_depth
|
|
)
|
|
|
|
if bilstm_depth >= 1:
|
|
tok2vec = tok2vec >> PyTorchLSTM(
|
|
nO=width, nI=width, depth=bilstm_depth, bi=True
|
|
)
|
|
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
|
tok2vec.set_dim("nO", width)
|
|
tok2vec.set_ref("embed", embed)
|
|
return tok2vec
|