mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
569cc98982
* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
171 lines
5.8 KiB
Python
171 lines
5.8 KiB
Python
from thinc.layers import chain, clone, concatenate, with_array, uniqued
|
|
from thinc.model import Model
|
|
from thinc.layers import noop, with_padded
|
|
from thinc.layers import Maxout, expand_window
|
|
from thinc.layers import HashEmbed, StaticVectors
|
|
from thinc.layers import residual, LayerNorm, FeatureExtractor
|
|
|
|
from spacy.ml import _character_embed
|
|
from ..util import make_layer, registry
|
|
|
|
|
|
@registry.architectures.register("spacy.Tok2Vec.v1")
|
|
def Tok2Vec(config):
|
|
doc2feats = make_layer(config["@doc2feats"])
|
|
embed = make_layer(config["@embed"])
|
|
encode = make_layer(config["@encode"])
|
|
field_size = 0
|
|
if encode.has_attr("receptive_field"):
|
|
field_size = encode.attrs["receptive_field"]
|
|
tok2vec = chain(doc2feats, with_array(chain(embed, encode), pad=field_size))
|
|
tok2vec.attrs["cfg"] = config
|
|
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
|
tok2vec.set_ref("embed", embed)
|
|
tok2vec.set_ref("encode", encode)
|
|
return tok2vec
|
|
|
|
|
|
@registry.architectures.register("spacy.Doc2Feats.v1")
|
|
def Doc2Feats(config):
|
|
columns = config["columns"]
|
|
return FeatureExtractor(columns)
|
|
|
|
|
|
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
|
def MultiHashEmbed(config):
|
|
# For backwards compatibility with models before the architecture registry,
|
|
# we have to be careful to get exactly the same model structure. One subtle
|
|
# trick is that when we define concatenation with the operator, the operator
|
|
# is actually binary associative. So when we write (a | b | c), we're actually
|
|
# getting concatenate(concatenate(a, b), c). That's why the implementation
|
|
# is a bit ugly here.
|
|
cols = config["columns"]
|
|
width = config["width"]
|
|
rows = config["rows"]
|
|
|
|
norm = HashEmbed(width, rows, column=cols.index("NORM"), dropout=0.0)
|
|
if config["use_subwords"]:
|
|
prefix = HashEmbed(width, rows // 2, column=cols.index("PREFIX"), dropout=0.0)
|
|
suffix = HashEmbed(width, rows // 2, column=cols.index("SUFFIX"), dropout=0.0)
|
|
shape = HashEmbed(width, rows // 2, column=cols.index("SHAPE"), dropout=0.0)
|
|
if config.get("@pretrained_vectors"):
|
|
glove = make_layer(config["@pretrained_vectors"])
|
|
mix = make_layer(config["@mix"])
|
|
|
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
|
if config["use_subwords"] and config["@pretrained_vectors"]:
|
|
mix._layers[0].set_dim("nI", width * 5)
|
|
layer = uniqued(
|
|
(glove | norm | prefix | suffix | shape) >> mix,
|
|
column=cols.index("ORTH"),
|
|
)
|
|
elif config["use_subwords"]:
|
|
mix._layers[0].set_dim("nI", width * 4)
|
|
layer = uniqued(
|
|
(norm | prefix | suffix | shape) >> mix, column=cols.index("ORTH")
|
|
)
|
|
elif config["@pretrained_vectors"]:
|
|
mix._layers[0].set_dim("nI", width * 2)
|
|
layer = uniqued((glove | norm) >> mix, column=cols.index("ORTH"),)
|
|
else:
|
|
layer = norm
|
|
layer.attrs["cfg"] = config
|
|
return layer
|
|
|
|
|
|
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
|
def CharacterEmbed(config):
|
|
width = config["width"]
|
|
chars = config["chars"]
|
|
|
|
chr_embed = _character_embed.CharacterEmbed(nM=width, nC=chars)
|
|
other_tables = make_layer(config["@embed_features"])
|
|
mix = make_layer(config["@mix"])
|
|
|
|
model = chain(concatenate(chr_embed, other_tables), mix)
|
|
model.attrs["cfg"] = config
|
|
return model
|
|
|
|
|
|
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
|
|
def MaxoutWindowEncoder(config):
|
|
nO = config["width"]
|
|
nW = config["window_size"]
|
|
nP = config["pieces"]
|
|
depth = config["depth"]
|
|
|
|
cnn = expand_window(window_size=nW), Maxout(nO=nO, nI=nO * ((nW * 2) + 1), nP=nP, dropout=0.0, normalize=True)
|
|
model = clone(residual(cnn), depth)
|
|
model.set_dim("nO", nO)
|
|
model.attrs["receptive_field"] = nW * depth
|
|
return model
|
|
|
|
|
|
@registry.architectures.register("spacy.MishWindowEncoder.v1")
|
|
def MishWindowEncoder(config):
|
|
from thinc.layers import Mish
|
|
|
|
nO = config["width"]
|
|
nW = config["window_size"]
|
|
depth = config["depth"]
|
|
|
|
cnn = chain(expand_window(window_size=nW), Mish(nO=nO, nI=nO * ((nW * 2) + 1)), LayerNorm(nO))
|
|
model = clone(residual(cnn), depth)
|
|
model.set_dim("nO", nO)
|
|
return model
|
|
|
|
|
|
@registry.architectures.register("spacy.PretrainedVectors.v1")
|
|
def PretrainedVectors(config):
|
|
# TODO: actual vectors instead of name
|
|
return StaticVectors(vectors=config["vectors_name"], nO=config["width"], column=config["column"], dropout=0.0)
|
|
|
|
|
|
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
|
|
def TorchBiLSTMEncoder(config):
|
|
import torch.nn
|
|
# TODO FIX
|
|
from thinc.layers import PyTorchRNNWrapper
|
|
|
|
width = config["width"]
|
|
depth = config["depth"]
|
|
if depth == 0:
|
|
return noop()
|
|
return with_padded(
|
|
PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
|
|
)
|
|
|
|
|
|
# TODO: update
|
|
_EXAMPLE_CONFIG = {
|
|
"@doc2feats": {
|
|
"arch": "Doc2Feats",
|
|
"config": {"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]},
|
|
},
|
|
"@embed": {
|
|
"arch": "spacy.MultiHashEmbed.v1",
|
|
"config": {
|
|
"width": 96,
|
|
"rows": 2000,
|
|
"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"],
|
|
"use_subwords": True,
|
|
"@pretrained_vectors": {
|
|
"arch": "TransformedStaticVectors",
|
|
"config": {
|
|
"vectors_name": "en_vectors_web_lg.vectors",
|
|
"width": 96,
|
|
"column": 0,
|
|
},
|
|
},
|
|
"@mix": {
|
|
"arch": "LayerNormalizedMaxout",
|
|
"config": {"width": 96, "pieces": 3},
|
|
},
|
|
},
|
|
},
|
|
"@encode": {
|
|
"arch": "MaxoutWindowEncode",
|
|
"config": {"width": 96, "window_size": 1, "depth": 4, "pieces": 3},
|
|
},
|
|
}
|