spaCy/website/docs/api/textcategorizer.md
Ines Montani 296446a1c8
Tidy up and improve docs and docstrings (#3370)
<!--- Provide a general summary of your changes in the title. -->

## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs

### Types of change
enhancement, docs

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-03-08 11:42:26 +01:00

331 lines
16 KiB
Markdown

---
title: TextCategorizer
tag: class
source: spacy/pipeline/pipes.pyx
new: 2
---
This class is a subclass of `Pipe` and follows the same API. The pipeline
component is available in the [processing pipeline](/usage/processing-pipelines)
via the ID `"textcat"`.
## TextCategorizer.Model {#model tag="classmethod"}
Initialize a model for the pipe. The model should implement the
`thinc.neural.Model` API. Wrappers are under development for most major machine
learning libraries.
| Name | Type | Description |
| ----------- | ------ | ------------------------------------- |
| `**kwargs` | - | Parameters for initializing the model |
| **RETURNS** | object | The initialized model. |
## TextCategorizer.\_\_init\_\_ {#init tag="method"}
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.create_pipe`](/api/language#create_pipe).
> #### Example
>
> ```python
> # Construction via create_pipe
> textcat = nlp.create_pipe("textcat")
> textcat = nlp.create_pipe("textcat", config={"exclusive_classes": True})
>
> # Construction from class
> from spacy.pipeline import TextCategorizer
> textcat = TextCategorizer(nlp.vocab)
> textcat.from_disk("/path/to/model")
> ```
| Name | Type | Description |
| ------------------- | ----------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | `Vocab` | The shared vocabulary. |
| `model` | `thinc.neural.Model` / `True` | The model powering the pipeline component. If no model is supplied, the model is created when you call `begin_training`, `from_disk` or `from_bytes`. |
| `exclusive_classes` | bool | Make categories mutually exclusive. Defaults to `False`. |
| `architecture` | unicode | Model architecture to use, see [architectures](#architectures) for details. Defaults to `"ensemble"`. |
| **RETURNS** | `TextCategorizer` | The newly constructed object. |
### Architectures {#architectures new="2.1"}
Text classification models can be used to solve a wide variety of problems.
Differences in text length, number of labels, difficulty, and runtime
performance constraints mean that no single algorithm performs well on all types
of problems. To handle a wider variety of problems, the `TextCategorizer` object
allows configuration of its model architecture, using the `architecture` keyword
argument.
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `"ensemble"` | **Default:** Stacked ensemble of a unigram bag-of-words model and a neural network model. The neural network uses a CNN with mean pooling and attention. |
| `"simple_cnn"` | A neural network model where token vectors are calculated using a CNN. The vectors are mean pooled and used as features in a feed-forward network. |
## TextCategorizer.\_\_call\_\_ {#call tag="method"}
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order. Both
[`__call__`](/api/textcategorizer#call) and [`pipe`](/api/textcategorizer#pipe)
delegate to the [`predict`](/api/textcategorizer#predict) and
[`set_annotations`](/api/textcategorizer#set_annotations) methods.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> doc = nlp(u"This is a sentence.")
> # This usually happens under the hood
> processed = textcat(doc)
> ```
| Name | Type | Description |
| ----------- | ----- | ------------------------ |
| `doc` | `Doc` | The document to process. |
| **RETURNS** | `Doc` | The processed document. |
## TextCategorizer.pipe {#pipe tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__`](/api/textcategorizer#call) and
[`pipe`](/api/textcategorizer#pipe) delegate to the
[`predict`](/api/textcategorizer#predict) and
[`set_annotations`](/api/textcategorizer#set_annotations) methods.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> for doc in textcat.pipe(docs, batch_size=50):
> pass
> ```
| Name | Type | Description |
| ------------ | -------- | ------------------------------------------------------ |
| `stream` | iterable | A stream of documents. |
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
## TextCategorizer.predict {#predict tag="method"}
Apply the pipeline's model to a batch of docs, without modifying them.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> scores = textcat.predict([doc1, doc2])
> ```
| Name | Type | Description |
| ----------- | -------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | iterable | The documents to predict. |
| **RETURNS** | tuple | A `(scores, tensors)` tuple where `scores` is the model's prediction for each document and `tensors` is the token representations used to predict the scores. Each tensor is an array with one row for each token in the document. |
## TextCategorizer.set_annotations {#set_annotations tag="method"}
Modify a batch of documents, using pre-computed scores.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> scores = textcat.predict([doc1, doc2])
> textcat.set_annotations([doc1, doc2], scores)
> ```
| Name | Type | Description |
| -------- | -------- | --------------------------------------------------------- |
| `docs` | iterable | The documents to modify. |
| `scores` | - | The scores to set, produced by `TextCategorizer.predict`. |
## TextCategorizer.update {#update tag="method"}
Learn from a batch of documents and gold-standard information, updating the
pipe's model. Delegates to [`predict`](/api/textcategorizer#predict) and
[`get_loss`](/api/textcategorizer#get_loss).
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> losses = {}
> optimizer = nlp.begin_training()
> textcat.update([doc1, doc2], [gold1, gold2], losses=losses, sgd=optimizer)
> ```
| Name | Type | Description |
| -------- | -------- | -------------------------------------------------------------------------------------------- |
| `docs` | iterable | A batch of documents to learn from. |
| `golds` | iterable | The gold-standard data. Must have the same length as `docs`. |
| `drop` | float | The dropout rate. |
| `sgd` | callable | The optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. |
| `losses` | dict | Optional record of the loss during training. The value keyed by the model's name is updated. |
## TextCategorizer.get_loss {#get_loss tag="method"}
Find the loss and gradient of loss for the batch of documents and their
predicted scores.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> scores = textcat.predict([doc1, doc2])
> loss, d_loss = textcat.get_loss([doc1, doc2], [gold1, gold2], scores)
> ```
| Name | Type | Description |
| ----------- | -------- | ------------------------------------------------------------ |
| `docs` | iterable | The batch of documents. |
| `golds` | iterable | The gold-standard data. Must have the same length as `docs`. |
| `scores` | - | Scores representing the model's predictions. |
| **RETURNS** | tuple | The loss and the gradient, i.e. `(loss, gradient)`. |
## TextCategorizer.begin_training {#begin_training tag="method"}
Initialize the pipe for training, using data examples if available. If no model
has been initialized yet, the model is added.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> nlp.pipeline.append(textcat)
> optimizer = textcat.begin_training(pipeline=nlp.pipeline)
> ```
| Name | Type | Description |
| ------------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `gold_tuples` | iterable | Optional gold-standard annotations from which to construct [`GoldParse`](/api/goldparse) objects. |
| `pipeline` | list | Optional list of pipeline components that this component is part of. |
| `sgd` | callable | An optional optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. Will be created via [`TextCategorizer`](/api/textcategorizer#create_optimizer) if not set. |
| **RETURNS** | callable | An optimizer. |
## TextCategorizer.create_optimizer {#create_optimizer tag="method"}
Create an optimizer for the pipeline component.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> optimizer = textcat.create_optimizer()
> ```
| Name | Type | Description |
| ----------- | -------- | -------------- |
| **RETURNS** | callable | The optimizer. |
## TextCategorizer.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> with textcat.use_params():
> textcat.to_disk("/best_model")
> ```
| Name | Type | Description |
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
| `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
## TextCategorizer.add_label {#add_label tag="method"}
Add a new label to the pipe.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> textcat.add_label("MY_LABEL")
> ```
| Name | Type | Description |
| ------- | ------- | ----------------- |
| `label` | unicode | The label to add. |
## TextCategorizer.to_disk {#to_disk tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> textcat.to_disk("/path/to/textcat")
> ```
| Name | Type | Description |
| ------ | ---------------- | --------------------------------------------------------------------------------------------------------------------- |
| `path` | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
## TextCategorizer.from_disk {#from_disk tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> textcat.from_disk("/path/to/textcat")
> ```
| Name | Type | Description |
| ----------- | ----------------- | -------------------------------------------------------------------------- |
| `path` | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
| **RETURNS** | `TextCategorizer` | The modified `TextCategorizer` object. |
## TextCategorizer.to_bytes {#to_bytes tag="method"}
> #### Example
>
> ```python
> textcat = TextCategorizer(nlp.vocab)
> textcat_bytes = textcat.to_bytes()
> ```
Serialize the pipe to a bytestring.
| Name | Type | Description |
| ----------- | ----- | ---------------------------------------------------- |
| `**exclude` | - | Named attributes to prevent from being serialized. |
| **RETURNS** | bytes | The serialized form of the `TextCategorizer` object. |
## TextCategorizer.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> textcat_bytes = textcat.to_bytes()
> textcat = TextCategorizer(nlp.vocab)
> textcat.from_bytes(textcat_bytes)
> ```
| Name | Type | Description |
| ------------ | ----------------- | ---------------------------------------------- |
| `bytes_data` | bytes | The data to load from. |
| `**exclude` | - | Named attributes to prevent from being loaded. |
| **RETURNS** | `TextCategorizer` | The `TextCategorizer` object. |
## TextCategorizer.labels {#labels tag="property"}
The labels currently added to the component.
> #### Example
>
> ```python
> textcat.add_label("MY_LABEL")
> assert "MY_LABEL" in textcat.labels
> ```
| Name | Type | Description |
| ----------- | ----- | ---------------------------------- |
| **RETURNS** | tuple | The labels added to the component. |