title |
tag |
source |
new |
teaser |
api_base_class |
api_string_name |
api_trainable |
EntityLinker |
class |
spacy/pipeline/entity_linker.py |
2.2 |
Pipeline component for named entity linking and disambiguation |
/api/pipe |
entity_linker |
true |
Config and implementation
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
config
argument on nlp.add_pipe
or in your
config.cfg
for training. See the
model architectures documentation for details on the
architectures and their arguments and hyperparameters.
Example
from spacy.pipeline.entity_linker import DEFAULT_NEL_MODEL
config = {
"kb": None,
"labels_discard": [],
"incl_prior": True,
"incl_context": True,
"model": DEFAULT_NEL_MODEL,
}
nlp.add_pipe("entity_linker", config=config)
Setting |
Type |
Description |
Default |
kb |
KnowledgeBase |
|
None |
labels_discard |
Iterable[str] |
|
[] |
incl_prior |
bool |
|
True |
incl_context |
bool |
|
True |
model |
Model |
The model to use. |
EntityLinker |
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/entity_linker.py
EntityLinker.__init__
Example
# Construction via add_pipe with default model
entity_linker = nlp.add_pipe("entity_linker")
# Construction via add_pipe with custom model
config = {"model": {"@architectures": "my_el"}}
entity_linker = nlp.add_pipe("entity_linker", config=config)
# Construction from class
from spacy.pipeline import EntityLinker
entity_linker = EntityLinker(nlp.vocab, model)
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
nlp.add_pipe
.
Name |
Type |
Description |
vocab |
Vocab |
The shared vocabulary. |
model |
Model |
The Model powering the pipeline component. |
name |
str |
String name of the component instance. Used to add entries to the losses during training. |
keyword-only |
|
|
kb |
KnowlegeBase |
|
labels_discard |
Iterable[str] |
|
incl_prior |
bool |
|
incl_context |
bool |
|
EntityLinker.__call__
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the nlp
object is called on a text
and all pipeline components are applied to the Doc
in order. Both
__call__
and pipe
delegate to the predict
and
set_annotations
methods.
Example
doc = nlp("This is a sentence.")
entity_linker = nlp.add_pipe("entity_linker")
# This usually happens under the hood
processed = entity_linker(doc)
Name |
Type |
Description |
doc |
Doc |
The document to process. |
RETURNS |
Doc |
The processed document. |
EntityLinker.pipe
Apply the pipe to a stream of documents. This usually happens under the hood
when the nlp
object is called on a text and all pipeline components are
applied to the Doc
in order. Both __call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
entity_linker = nlp.add_pipe("entity_linker")
for doc in entity_linker.pipe(docs, batch_size=50):
pass
Name |
Type |
Description |
stream |
Iterable[Doc] |
A stream of documents. |
keyword-only |
|
|
batch_size |
int |
The number of texts to buffer. Defaults to 128 . |
YIELDS |
Doc |
Processed documents in the order of the original text. |
EntityLinker.begin_training
Initialize the pipe for training, using data examples if available. Return an
Optimizer
object. Before calling this
method, a knowledge base should have been defined with
set_kb
.
Example
entity_linker = nlp.add_pipe("entity_linker", last=True)
entity_linker.set_kb(kb)
optimizer = entity_linker.begin_training(pipeline=nlp.pipeline)
Name |
Type |
Description |
get_examples |
Callable[[], Iterable[Example]] |
Optional function that returns gold-standard annotations in the form of Example objects. |
keyword-only |
|
|
pipeline |
List[Tuple[str, Callable]] |
Optional list of pipeline components that this component is part of. |
sgd |
Optimizer |
An optional optimizer. Will be created via create_optimizer if not set. |
RETURNS |
Optimizer |
The optimizer. |
EntityLinker.predict
Apply the pipeline's model to a batch of docs, without modifying them. Returns
the KB IDs for each entity in each doc, including NIL
if there is no
prediction.
Example
entity_linker = nlp.add_pipe("entity_linker")
kb_ids = entity_linker.predict([doc1, doc2])
Name |
Type |
Description |
docs |
Iterable[Doc] |
The documents to predict. |
RETURNS |
List[str] |
The predicted KB identifiers for the entities in the docs . |
EntityLinker.set_annotations
Modify a batch of documents, using pre-computed entity IDs for a list of named
entities.
Example
entity_linker = nlp.add_pipe("entity_linker")
kb_ids = entity_linker.predict([doc1, doc2])
entity_linker.set_annotations([doc1, doc2], kb_ids)
Name |
Type |
Description |
docs |
Iterable[Doc] |
The documents to modify. |
kb_ids |
List[str] |
The knowledge base identifiers for the entities in the docs, predicted by EntityLinker.predict . |
EntityLinker.update
Learn from a batch of Example
objects, updating both the
pipe's entity linking model and context encoder. Delegates to
predict
.
Example
entity_linker = nlp.add_pipe("entity_linker")
optimizer = nlp.begin_training()
losses = entity_linker.update(examples, sgd=optimizer)
Name |
Type |
Description |
examples |
Iterable[Example] |
A batch of Example objects to learn from. |
keyword-only |
|
|
drop |
float |
The dropout rate. |
set_annotations |
bool |
Whether or not to update the Example objects with the predictions, delegating to set_annotations . |
sgd |
Optimizer |
The optimizer. |
losses |
Dict[str, float] |
Optional record of the loss during training. Updated using the component name as the key. |
RETURNS |
Dict[str, float] |
The updated losses dictionary. |
EntityLinker.set_kb
Define the knowledge base (KB) used for disambiguating named entities to KB
identifiers.
Example
entity_linker = nlp.add_pipe("entity_linker")
entity_linker.set_kb(kb)
EntityLinker.create_optimizer
Create an optimizer for the pipeline component.
Example
entity_linker = nlp.add_pipe("entity_linker")
optimizer = entity_linker.create_optimizer()
Name |
Type |
Description |
RETURNS |
Optimizer |
The optimizer. |
EntityLinker.use_params
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
Example
entity_linker = nlp.add_pipe("entity_linker")
with entity_linker.use_params(optimizer.averages):
entity_linker.to_disk("/best_model")
Name |
Type |
Description |
params |
dict |
The parameter values to use in the model. |
EntityLinker.to_disk
Serialize the pipe to disk.
Example
entity_linker = nlp.add_pipe("entity_linker")
entity_linker.to_disk("/path/to/entity_linker")
Name |
Type |
Description |
path |
str / Path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. |
exclude |
Iterable[str] |
String names of serialization fields to exclude. |
EntityLinker.from_disk
Load the pipe from disk. Modifies the object in place and returns it.
Example
entity_linker = nlp.add_pipe("entity_linker")
entity_linker.from_disk("/path/to/entity_linker")
Name |
Type |
Description |
path |
str / Path |
A path to a directory. Paths may be either strings or Path -like objects. |
exclude |
Iterable[str] |
String names of serialization fields to exclude. |
RETURNS |
EntityLinker |
The modified EntityLinker object. |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Example
data = entity_linker.to_disk("/path", exclude=["vocab"])
Name |
Description |
vocab |
The shared Vocab . |
cfg |
The config file. You usually don't want to exclude this. |
model |
The binary model data. You usually don't want to exclude this. |
kb |
The knowledge base. You usually don't want to exclude this. |